a2 United States Patent
Resch

US009110593B2

(10) Patent No.: US 9,110,593 B2
(45) Date of Patent: Aug. 18, 2015

(54) SECURING A DATA SEGMENT FOR
STORAGE

(71) Applicant: CLEVERSAFE, INC., Chicago, I,
(US)

(72) Inventor: Jason K. Resch, Chicago, IL. (US)
(73) Assignee: Cleversafe, Inc., Chicago, IL. (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

(21) Appl. No.: 14/331,676
(22) Filed: Jul. 15,2014

(65) Prior Publication Data
US 2014/0331065 Al Nov. 6, 2014
Related U.S. Application Data

(63) Continuation of application No. 13/464,082, filed on
May 4, 2012, now Pat. No. 8,782,439.

(60) Provisional application No. 61/493,820, filed on Jun.

6,2011.
(51) Int.CL

GOGF 12/14 (2006.01)

GOGF 3/06 (2006.01)

GOGF 21/62 (2013.01)

GOGF 11/10 (2006.01)

GOGF 11/20 (2006.01)

GOGF 21/64 (2013.01)

GOGF 17/30 (2006.01)

GOGF 15/173 (2006.01)
(52) US.CL

CPC oo GOGF 3/0604 (2013.01); GOGF 3/067

(2013.01); GOGF 3/0644 (2013.01); GO6F
11/10 (2013.01); GO6F 11/1076 (2013.01);
GOGF 11/2089 (2013.01); GOGF 12/1408
(2013.01); GOGF 21/6218 (2013.01); GO6F
21/64 (2013.01); GOGF 15/17331 (2013.01);
GOGF 17/30283 (2013.01); GOGF 2212/263
(2013.01)

(58) Field of Classification Search
CPC .. GO6F 21/6218; GOG6F 11/10; GOG6F 12/1408
See application file for complete search history.
(56) References Cited
U.S. PATENT DOCUMENTS

7,636,724 B2 12/2009 de la Torre et al.

2010/0268966 Al* 10/2010 Leggetteetal. 713/193
2012/0243687 Al* 9/2012 Lietal.cccooviinnnn. 380/277
OTHER PUBLICATIONS

Kubiatowicz, et al.; OceanStore: An Architecture for Global-Scale
Persistent Storage; Proceedings of the Ninth International Confer-
ence on Architectural Support for Programming Languages and
Operating Systems (ASPLOS 2000); Nov. 2000; pp. 1-12.

Primary Examiner — Matthew Henning
(74) Attorney, Agent, or Firm — Garlick & Markison;
Timothy W. Markison

(57) ABSTRACT

A method begins by a dispersed storage (DS) processing
module encrypting a data segment utilizing an encryption key
to produce an encrypted data segment and performing a deter-
ministic function on the encrypted data to produce a trans-
formed representation of the encrypted data. The method
continues with the DS processing module masking the
encryption key utilizing the transformed representation of the
encrypted data to produce a masked key, partitioning the
masked key into a plurality masked key partitions, partition-
ing the encrypted data segment into a plurality of encrypted
data segment partitions, and combining the plurality of
masked key partitions with the plurality of encrypted data
segment partitions to produce a plurality of combined parti-
tions. For a combined partition of the plurality of combined
partitions, the method continues with the DS processing mod-
ule encoding the combined partition using a dispersed storage
error coding function to produce a set of encoded data slices.

15 Claims, 20 Drawing Sheets

342

facilitate retrieving two or more pluralities
of sets of encoded portion slices

] 344

dispersed storage error decode the two or
more pluralities of sets of encoded portion
slices to produce two or more portions

346

combine the two or more portions to
produce a secure package

348
split the secure package to produce a
masked key and an encrypted data
segment
[350
transform the encrypted data segment
utilizing a hashing function to produce a
transformed data segment
¥ 352

de-mask the masked key utilizing a de-
masking function to produce a key

L |

¥

decrypt the encrypted data segment
utilizing the key to produce a data
segment

LI

US 9,110,593 B2

Sheet 1 of 20

Aug. 18, 2015

U.S. Patent

0T Wa35AS 3unndiod
T'91d

0z 1un duissasoud
Apu321u1 98ed01s

g¢ 2400
gunndwoo

| 87 xX"A22us01 | | 37 1A =503 | ¢
— (YY) Ty _ € 90BI93UI NSQ
g1 3un 77 X T 22I[s T 1T 20I[S A A
Suieuew sq | 77 x 120503 | | Z1 100503 |
200
9z 2400 P
Sunndwod ;/ \,
L S¥ so011s
A R —
| 87X A2os03 |@ee | TF 1 AR0UsOT |
) ® TTsadls —<1— I~
[®
® o
| 77 X 1201503 |@ee | TH1 T201s03 | Y
— 000 —
PT 221A2p Jash _ 7€ 2oBMRIUI NSQ _
Y Y A

g7 2400
Sunndwoo

0v 00| eiep]
10/138€ 3|y e1Ep

§ i

_ F€ Suissanoud sq _

g 2400 unndwod

9T Hun Buissasold 5@

Y

€ Suissanoud
¢

g 2400 Sunndwod

T @31ALp Jash

US 9,110,593 B2

Sheet 2 of 20

Aug. 18, 2015

U.S. Patent

9/ 9|npow
2084433U] NSQ

Y7 9|npoul
3oe4Ia3UI OH

NIN d|NpoW @2eliolul

0Z 9|npowl
ysel 3B}l oMU

89 9|npowl
35e4I93u] YaH

99 9|npouwl
3oe4Ia3UI G4SN

1

A

A

i

W mwe«

20BJI91UI [Dd

¥9solig
NOY

{

29 s|nhpow
9Je31ul
AP Ol

9g J49]|0J1U0D 09 2oeL21ul

Ol ou_F
7S Aowsw ZG 43]|0Ju0D 0S a|npow
ulew ke Alowaw ke duisseooud

€< 1un Suissanoud
soiydesd ospin

————,——— — — — - — - ._—- —- —_—- —_—- .—- ._—- .- —_—- —_—- _—- _—- ._—- —_—- —_— —_— —_—_ —_—.— —_——_— —_——_———_— —_— —_——_——

US 9,110,593 B2

Sheet 3 of 20

Aug. 18, 2015

U.S. Patent

GE sWeu 224n0§

87 XA 921[S B1BP POPOI JOLID €Ol 9% T~ A 221|S Blep popod oo
Dwieu 301|§ sweu a31|S
[] >c [
s _ 7€ @0BJJ21U1 13USQ _ S
— ® e
¥ X T 92][S elep popod Jodlo ~— PP | _— ¥ T T 92lIs e3ep papod oD
aweu 321§ I — aweu 321|g
87 X A@01s coo gy T A0S
E}ep PapOD JOMID BlEP PRPO0 JOMIB _ 78 a|npow a8ei01s _
aweu adl|§ ® aweu a2I|§
)
— —_— . — —
TP X T 92ls oo v T Tads
el1ep papod Jodia e1ep papod Jodia
dweu 321|S aweu 321§
8 °9|npow pL3
sweu eieq | asas | uadinea | gl ynea | xspul IS
dyloads uonewJloju| Sunnoy |estaniu
AneA [JUl SUlNOYy | un
/€ dweu 2015 % 10°lq0
— elep
76 A JuswWsas eiep
YY) 08 3|npow ssadde gg sweu
— 19[q0
06 T uawsgas eiep
GE sWeu 224n0S 98 dl
Jasn
p—]
0% 10°[qo e1ep — | «——>
87 9|npow Aemayed m >
3
o)

ai sy _ ASDJ _ usg ynep | aranea

5S¢ aWeu 224n0g

< snpow Zuissanoud sQ

US 9,110,593 B2

Sheet 4 of 20

Aug. 18, 2015

U.S. Patent

poouseepd3 [“g [“q[“q|"q | g "a] | 9] TE]

gaouserepd3 ["a|"a["a["a["a["a]'a] q |

BLI0Ns fe—

A SR KIKI KIKIKIEIKIK

tavseepd3 | g | "q [g [g ["q| 9| a]| q]

KIJEKIK _QQQH oee | g [eee| g | g |eee| |

76 waw8ss elep papoous Jo SUq ZE

e Fempowps

_
| 8 Jore|ndiuew 75 1soyis- == 150005 £g Jorendivew |
< [> -9p 91|s-1sod S lIS-2p < 58 49p029p m_ > -9p 201|s-24d < [>

_

_

_

_

_

<>
_

_
_ _
_ €Z1un |oJju00 U__:nw;__
_ _
_ _
_

_ X 9315 e38P D3 _

® T8 Joiendivew —_ — G/ Jorendivew
“ < | > 221|s-150d <> 6L 4931 LLA5POdUS 2ol|s-aud
_ 1 921js B3EP D3 _ _
e e e e e e e e e e e e e e e e — — —— — —— — — — — — — — — — — — — —
6 JUSWSoS elep popoluD _ _ 26-06 UsW3os eyep

US 9,110,593 B2

Sheet 5 of 20

Aug. 18, 2015

U.S. Patent

8-9)

L9

8-3

-9

8-

LA

9-

S-vA

8-e

L-e

9-e

S-€

8-

LD

9-0

S-aA

-

-0

8-

L-TH

9-TA

S-TA

-

€T

8

L

9

S

14

€

[4

I

¥OT 3uswudisse Aoy Hun s

20T Ay
Jied yun sg

49 'Ol

(K3-5)@partial (2,5) ®(K1-6)® partial (2,6)

1IIIIIIIII l
_ _
ey T | |
v9 o4 | |
_ g 1un sgd , 1un §g _
_ 7 oS _
e o o o o — —_ — —
_——— e -
| (5°7) lenJeda(g-g)) |
_ « _ _
_ _
_ g 1un sd g Hun sg _
< _ € oMs _
o e o e e e e e -l
=
.m —— e s e e e e——— —
2 _ (£7) |enede(g-£X) _
S I aa
—
= _ ¥ HuUn sg € Hun sg _
G _ 7 2Us _
- e e e e e e e — — — -
3]
= T _
2 | (17) jewsede(g-T)e(r-TH) |
@ _ v _ _
< > _
= I zyunsq TUUnsq _
—>>
_ T 2Us _
e e o e o — — —l

US 9,110,593 B2

Sheet 6 of 20

Aug. 18, 2015

U.S. Patent

i

A

T
Aowaw

_ TTT ainpow s@

90T

aTt
dInpouw 32l|s
|enJed ydAious

T A

92l|s |egJed

Y11 o|npow

8TT 22IIs 221|s [enJed

21eJ2uad

9TT 1sonbau A
piingaJ

€TT 9a|npow
1sonbal
EYNEREY]

61T 221|s |ended
pa1dAidus

>

221A3p Sunndwod

91T 1sanbad pjingal

S0T Aqua
Supsanbal

US 9,110,593 B2

Sheet 7 of 20

Aug. 18, 2015

U.S. Patent

1 VANDIE|

$221|S |enJed
paidAious Jo Aedse syl wod) 321|S elep
papoous ay3 spjingaJ Aynus 3unsanbal syl

ST 1

$221|s |ended paidAious jo
Aelle ue aonpodd 01 shoy uondAaous Jo 19s
e 3uisn sa21|s |enJed jo Aedse ayy sydAious
SHUN S JO 195 9y} JO SWOS 1se3| 18 2y}

i 1

S90I|S
|ered jo Aedde ue sonpoud 0} 3Ingad 29 03
21| e1ep papodUs 3y3 01 Sulpuodssliod
921Is |ewJed e sa1edauad sHun s
JO 195 93 JO SWOS 1Se3| 1. JO Hun S yoes

& A

SHUN S JO 19S & JO BWOS 1Sed) 1e 0}
sisanbaJ pjingaJ sanssi Alnua Sunssnbau e

o A

US 9,110,593 B2

Sheet 8 of 20

Aug. 18, 2015

U.S. Patent

A3ojod o) 3uip|ingaJ e yiim aouepJodoe
ul 991|s |ened paidAioua syl andino

Ye]

ST A

201|s |enJed paidAious
ue 9onpoJd 01 sAy 12409 paJeys
ay3 Jo yoes yum |ended ayl 1dAsous

T x

921|S |enJed e a1es2udd

N
—

ot A

sappua dunied Aoy
2JOW 10 3uo ay1 Jo yaea 03 Suipuodsatiod
Ad)| 12408$ paleys e a1elsusd

T k

syuawadinbal Suldied Ay uo paseq
sannua sulied Asy a1ow JO BUO 193995

00|
i

€

A

saljua 3ullied Ay 21epipued aulwialep

Yol
o™
—

A

sjuswadinbaJ Suried A9y sulwJa1ap

<
e8]
—

A

3senbau pjingaJ e a2

o
o
—

A

US 9,110,593 B2

Sheet 9 of 20

Aug. 18, 2015

U.S. Patent

g uunsq

ST Adowaw

<—

A

997 =1epdn

gg mun sqg

>

09T @|npow alemyos aiep

dn

99T o1epdn
79T A8orens

g uunsq

Y

89T sniels mwm_oo_sv

8sT

a|npow A331e015
21epdn aulwJ1ap

99T a1epdn
Z9T @2210u

GT 9|npow 310U a1epdn aAa33l

99T =3epdn

9 1epdn

w

1

0ST 221n8p Sunndwod

ZST ?Inpow s@

o
Neo]
-~
vl U

opou

management unit 18

US 9,110,593 B2

496 'OId

<« 88T o|npow a1epdn aJemyos a1ei|1oe}

«€«—— 997 @21epdn

O

€ Hun sg

>

997 21epdn

Sheet 10 of 20

791 AS=1e.1s

sasuodsal —_—
061 98T

SoHoU a|npow Adale.is

Y}

e Hunsqg

99T 21epdn

79T 2o10u

Aug. 18, 2015

O

€ lun sag —_
¥8T 9|npow 010U J1eiauad

U.S. Patent

| ¥

Z9T 2on0U

_

_

_

|

_

_

_

_

_

_

< “ 89T smeis Bmvo_sv a1epdn aujwBIap

_

_

_

_

_

_

_

_ —_

| 8T °|npow 5

08T 221ap Sunndwod

US 9,110,593 B2

Sheet 11 of 20

Aug. 18, 2015

U.S. Patent

A321e11s @yepdn syl
YHM S0UepJodde ul aiemyos ayi arepdn

o2 k

2Jemyos
dunepdn Joj A3a1e41s 31epPdN UE BUIWLJIRISP

(o]

coe A

sHun
SQ jo Ajljean|d e 03 sonou 21epdn alemyos
e ‘Jlun Juawadeuew e Ag ‘Suipuss

o

00z A

US 9,110,593 B2

Sheet 12 of 20

Aug. 18, 2015

U.S. Patent

90T 'Ol4

V0T 'S

Hun §g =41 01 uleyd =21edyiJad puss

e £

uoneado wJopad

1lun s e 01 a3eyded paugdis puas

00|
(28]
(o]

A

g £

28eyoed alepijea

23exoed pausdis e 21ea40

O
28]
o~

A

(e
(o]

0cz A

9IS
e1ep papoous ue aonpodd 01 A9y 19409 a3
duizijnn 901 e1ep psi1dAious ue 1dAIdBp

93exoed e a1eaud

T £

I k

A 18400s e sonpodd 01 Ay e1eand
e duizinn Aay 19429 pa1dAious ue 1dAIIRp

Ay 18428s paidAioua ue adnposd o) Ay
211gnd e duizijan A3y 32429s ay3 1dA1ous

(No]
o~

T

A

921|s erep pa1dAidus ue sonpoud 01
A 124095 231 3uizI|an $3I1|S elep PIPOdUD
J0 195 93 JO 201|s e1ep paposuad ue 1dAous

T k

>mv_ 12409S e ulelqo

o
—
o

A

= A
suolssiwJad a3epijen
3 A
aJnjeudis arepijen
= A
23exoed paudis e anlsdal
= f

S32I|S
e1ep PIPOIUD 4O 13s e aonpoJd 03 Juswas
elep e apoduUd Jolia a8elols pasiadsip

o

= f

US 9,110,593 B2

Sheet 13 of 20

Aug. 18, 2015

U.S. Patent

411 'Ol4

uonewJojul
A)J891U1 paJan0IBI B3 BIEpljeA

U243y} 28el03s Joj Adlowaw
NSQ 2yl 01 saJeys 12429S JO 19S 9y} puas

= x

= £

uoneuwlJoul
Aj4ga1u1 paJanodal pue Juswdas
elep e aonpoadas 03 Asy 12499s 2yl Suiziun
23eyoed eyep pardAious ayy 1dAidap

ulaJayy a8elols Joj Alowaw NS e 0}
s22||s paadAJouD pPapPOoIUD JO 135 DY1 pUSS

o

et A

= k

saJeys 3a42as
40195 e 9dnpoud 01 wyriod|e Sulieys
32400s e uizijyn A2y 12423 By} 2poduD

o3eyoed ejep pandAious
ue aonhpoudad 03 $291|s pardAIoud
papoous o Jaquinu pjoysa4y) 3podap
241 2p0d3p J04JD 23el0]s pasiadsip

= r

T £

s321|s paydAious papoous Jo
19$ e 2onpoud 01 9p0od d4nseds d1ew31sAs
e 3uizijnn adeyded ejep pardAious
91 2podu? JoJJ3 33el01s passadsip

A3y| 194085 B 90npoJdal 0} wylloge
dulieys 12409s e Buizi|an saJeys 18409S
J0 Jaquinu pjoysaJyl apodap ayl apodap

0
o

8¢ A

adeyoed
e1ep pardAious ue aonpodd 01 A9y 18429s
2y1 8uizijun adexoed eep ayi 1dAIous

e k

[\
o

572 A

Aowaw NS 2y1
WoJj s24eys 194235 JO 19S B JO SaJeys 12409s
JO Jaquinu pjoysaJyl apodap e aAal41al

Aoy 124095 e ulelqo

s x

= k

AJowsuw
NSQ e wol} sa01|s paidAious papoous
}013s e jo sa21|s pardAioua papodua
10O Jaquinu pjoysa.4yl apoIap e aAdlIIRl

23eyoed ejep e sonpoid 03 Juswdas eyep
91 pue uopew.ojul Au3a1ul 3yl sUIqUIOD

T x

= A

Juawsas
elep e 404 uonewJojul Ayidajul sledsuad

o f

V1T 'Ol

US 9,110,593 B2

Sheet 14 of 20

Aug. 18, 2015

U.S. Patent

08T |npow apodua

762 s901s

Z6¢ suonnJed

€ Hun sg paulquod

8T
3|NpPoW 2UIqUWIod

I

I

|

I

I

I

I

I

I

I

I 06¢
_ 88¢ suonnJed suonn.ed uswsas
_ Ay paysew eyep paidAioua
I

I

I

I

I

I

I

I

I

I

I

WO

€ Hun sg

§77 s|npow uopied

O

€1unsqg — ¥87 wswgass
98T A Umv_mmE% % elep paidAlous

¥Z¢ 3|npow 1dAioua 4

JuswW8as

ol
——————— - —— !

¢ Mowsw Ns@ _ e1ep
- ¢/ 3hpow Sd N

0Z¢ 291A9p Sunndwod

US 9,110,593 B2

Sheet 15 of 20

Aug. 18, 2015

U.S. Patent

jJomiau 23el01s pasiadsip ay3
01 S32||S BlEP P2POdUD JO S13s 3y} indino

o £

S32I|S e1EP PPOIUS JO S19S jo ANjein|d
9Y} JO S0I|S e1ep PapoIUa Jo S3as adnpoud
01 suoppJed pauiquod ululewal apodua

Y}

oTE A

3}40MIDU 23e101S pasiadsip ul 98es0ls
Joy} $22I1[S P1EP PapPO0oIUB JO 18s ay3 Indino

-

e A

S30I|S e1ep pPapodu
10 5195 Jo Aljedn|d e JO S92I|S e1ep PapPOIUD
J0 135 e adnpoJd 03 uonied paulquiod
91 9podu» ‘suoniled paulquod
Jo Ajjeun|d ay3 jo uonied pauiquod e 4oj

s A

- FADIE]

suonnJed paulqwod jo Aujesnd
e 2onpoJd 01 suonpled Juswsdas elep

paidAious Jo Aljesn|d syl yum suonied
A2y paysew jo Ajjesnid ay3 auiquod

o

0Te A

suonyJed
Juswgas eyep pardAaous jo Ayjeanid e
01u1 usW3as erep paldAsous syl uopnaed

o E

suonnJed Asy paysew
Jo Ajjean|d e ojul Ay paysew ayj uoned

o k

AD)| pajsew
e @onpoud 01 Wuswdas eyep pardAidus
2y3 Jo uonejuasaidal pawlojsuell
243 3uizijun Asy uondAious aya ysew

<

Zud A

usw3ss elep pardAious
2U3 Jo uoneluasaldal pawdojsueds
e 2onpoud 01 Juswdas eyep pandAious
241 UO Uonduhy d1sIUIWIRISP WJoad

o
o)

4y A

JUaw3as eyep
pa1dAious ue sonpoud 01 Ay uondAious
ue u1zijnn waw3as ejep e 1dAioua

o

00 A

US 9,110,593 B2

Sheet 16 of 20

Aug. 18, 2015

U.S. Patent

g4€1 'O

uswgas
e1ep e sonpoud 01 Asy oyl Suizijun
sw3as elep pardAious ayi 1dAsdep

<t
o

vSE A

Ay e @onpoad 01 uonduny Supsew
-ap e 3uizijnn Aay paysew ay) ysew-ap

o
m

csE A

JU2W3as e1ep paw.dojsuels
e 2onpoJd 01 uonouny dulysey e guizinn
1usw3as eiep pairdAious syl waojsuely

o
o

0e A

uswsass
elep pairdAidua ue pue Ay paysew
e 9onpoJd 03 adeyoed aundas ayy y|ds

0

e k

23ey2ed aundas e sonpoud
01 suolJod 2J0W JO OM] 3Y1 BUIGWOD

Y]
m

iz A

suonJod aJow Jo omi 3dnpoJd 03 $3JI|S
uonJod papoaua 4o s1as jo saiyjesnid aiocw
10 OM} 3y} apodap Jouda adelo)s pasiadsip

e £

$90I[S UoLiod papodus 4O S19S JO
sanljesn|d 2JoW JO 0M] SUIADILBS 918)1|1D.)

T 1

ovE VET 'OId
1usw3ss eiep

87 8EE Ay

J01dA1dsp
A 9¢ge

JUDW3as eyep

pawJolsuel) 9 € uonouny

_ > dupjsew-ap

f¢g uonouny A
Suiysey

pEE
Ay paysew

— 4, Zce Janlds
ZE€€ 1uaw3as eyep paydAious

0c¢ a8exoed aundas %

0ce
Jauiquiod

Z :o_toa% %ﬁ uood

Z8 o|hpow pl3

$221|s Z uood
papooua

$921|s T uonJod
papooua

US 9,110,593 B2

Sheet 17 of 20

Aug. 18, 2015

U.S. Patent

0Z€ ysey uoidal

89€ yisua) |erod

99¢ Yoeoidde uonejuaswsas

¥9¢€ 271s Juswdas

C9¢€ 2WeU 224Nn0s }jnea Wwawdas 1elrs

Y uoidal

0Z€ ysey uoidad

89€ Y13u| |e101

99¢ Yoeoidde uonejuaswsas

¥9¢€ 271s Juswdas

C9¢ 2WeU 22JNn0S }jneAa Wawdas 1elrs

Z uoidal

0Z€ Ysey uoidal

89¢€ Yidus [e101

99¢ yoeoudde uoneluswsas

¥9¢€ 271s Juawdas

Z9¢ 2WeU 324nos }nea WBwW33s 1EIS

T uoidal

09¢ 9|qe3 uonedo||e Wwawdas

US 9,110,593 B2

Sheet 18 of 20

Aug. 18, 2015

U.S. Patent

29vLT6 96504 OZE ysey uoigau
$91A0 0021 sa14q 00T 89¢ Y18u?) |e10}
paxy paxy 99¢ Yoeoidde uonejuawgas
s91Aq 00€ sa1iq 00T ¥9¢ azis uswsgas
9449 IR vAvATA % 2WeuU 22JNn0os }jnea PC@EM@W jJels ¥ &
| soviaooe'sdss | | sauhqooeves | [semmqooe‘eses | | sorhqooe zdes | | 0B 1VS

sgggusinen | |

ddg usijnea

gggausynen [[zaga usinen

| | oag8 usynen

99T 'Ol

1JB1S B1EP MAU 7 UOISIASI

VST 'OId

vazo6e 96€£50d4 0Z€ ysey uoigal
sa1Aq OvC sa14q 00T 89¢ Y18u?) |10}
paxy paxy 99¢ yoeosdde uonejuaw3das
s91Aq 00T sa1iq 00T F9¢€ azis uswgas
vy IYVYY Z9€ 2SWeU 32JN0S }NeA JUsW3as 1els ; &
59149 OF $331Aq 00T $31Aq 00T $93Aq 00T 88¢€ (LvS) 21qe
‘7 Juawdas ‘e Juawdas ‘7 Juawdas ‘T Juawdas uoned0o||e JUaW3as
144 A4 EvYvyY [A A4 TvvY ovvYy
SWEeU 324n0S }Nea 3WEeU 324n0S }nea SWeU 924n0s }NeA SWEU 32IN0S JNea 3WEU 32JN0S }NeA
l ddd
0 ddd 1VS Z uoisiaal
T vYvvy Mels e1ep T UOISIAB.
0 vvvY 1VS T uoisiaal
08E Jaquinu 9g¢c 'oulqo | F8Euad | Z8E Al ynea
aW3ss 87€ aWeU 321n0S TZ€ xapul 321
9/ € 2WeU 30JNnos }jnea
ZZ€ sweu 20I|s

US 9,110,593 B2

Sheet 19 of 20

Aug. 18, 2015

U.S. Patent

V9T "OId
r-——=—== _
_ | W | o _______ .
_ | eiep papoous | _
| | Jolis 23eso0ls | _
| | Ppasiadsip _ _
_ <€ . ZT¥ 3|npow _
_ _ Z7% ojul " e1ep MdU 2J01S |
— age101s NSQ |
9€ uun sg — —
“ _ _ ¢ ojul A 0CV e1ep aya jo |
_ _ " adelols NSd suonJod Sujuiewsl |
| _
_ e _ _ 47 _
| ® | | a|npow ojul 23elo)s 21elauad
_ Inp 4 |
| _ _
| _ _ A
| gg Munsa _ _ “
| _ _ |
| | | 80F a|npow _
| _ _ 575 opul ojul aJedwiod | _
_ . I _ 28e101s NSQ Y1V e1ep |
_ € nun s _ _ _
| | | Y0¥ o|hpowl _
| | _ 50% =|hpow ojul a5eJ0ls _
>»| ojul a8elols € A —
| _ 27T ol _ Jul 1S $S2008 555 ojul memm_whp_h_mwma Aa |
_ | a8eso1s NSO | age101s NSQ 4 _
| | | Aeutwiaud _
| ZZAowswnNsa | _ 707 9|npow Sq _

007 @21aep Sunndwod

US 9,110,593 B2

Sheet 20 of 20

Aug. 18, 2015

U.S. Patent

uonewoyul 28e101s NSQ
suonJod Sulurewas syl pue eiep Jayio
2y3 Jo uonuod ay3 1sea| ay3 Jo uonewJoul
a8eJo1s NSQ 2yl Uo paseq ejep
2y3 Joj uoniewlojul a8ei01s NS 21e42ua8

E A

uonewJou|
28eJ01s NS suonJod Suiuiewsd

22onpoJd 01 e1ep ayy o suonsod Zulutewsy

JOj uopewJoyul a3eJ01s NS 91esauad

‘eep Joylo oY Jo uonJod e 1ses| ie jo
uonewJojul 28e101s NSQ Yim uonewloyul

93eJ0)s NS Adeuiwiaid 9jquedwod
sey eiep ay1 jo uonJdod e 1ses| 18 usym

9T A

uonew.Jojul a8elols NS suondod
dururewaJ 3yl yum sduepiodde Ul elep
papoduD Jollo 93e401s pasadsip ay3 24031s

elep
J2430 a3 uipsedal uonewJojul agelols
NSQA 241 Ylim eiep ayi Joj uonewaojul
28eJ01s NS Aeujwiaad syl asedwod

| k

T x

e1ep papodus Jolua 98elols pasiadsip
2onpo.d 01 ejep ay3 Jo suopsod Sujulewsu
23 apodua Jousa s8eio)s pasiadsip

NSQ 2U3 Ul pa1o3s elep Jayio
SuipJedas uonewaoul 28e401s NSQ SSD208

w £

o A

NSQ B Ul paJ03s 2 01 B1ep 10} UOLBWIOUI
28eJ015s NS Adeulwljad a1elauad

0ev A

US 9,110,593 B2

1
SECURING A DATA SEGMENT FOR
STORAGE

CROSS REFERENCE TO RELATED PATENTS

The present U.S. Utility patent application claims priority
pursuant to 35 U.S.C. §120 as a continuation of U.S. Utility
application Ser. No. 13/464,082, entitled “SECURING A
DATA SEGMENT FOR STORAGE”, filed May 4, 2012,
issuing as U.S. Pat. No. 8,782,439 on Jul. 15, 2014, which
claims priority pursuant to 35 U.S.C. §119(e) to U.S. Provi-
sional Application No. 61/493,820, entitled “DATA SECU-
RITY IN A DISPERSED STORAGE NETWORK?, filed
Jun. 6, 2011, all of which are hereby incorporated herein by
reference in their entirety and made part of the present U.S.
Utility patent application for all purposes.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

Not Applicable

INCORPORATION-BY-REFERENCE OF
MATERIAL SUBMITTED ON A COMPACT DISC

Not Applicable

BACKGROUND OF THE INVENTION

1. Technical Field of the Invention

This invention relates generally to computing systems and
more particularly to data storage solutions within such com-
puting systems.

2. Description of Related Art

Computers are known to communicate, process, and store
data. Such computers range from wireless smart phones to
data centers that support millions of web searches, stock
trades, or on-line purchases every day. In general, a comput-
ing system generates data and/or manipulates data from one
form into another. For instance, an image sensor of the com-
puting system generates raw picture data and, using an image
compression program (e.g., JPEG, MPEG, etc.), the comput-
ing system manipulates the raw picture data into a standard-
ized compressed image.

With continued advances in processing speed and commu-
nication speed, computers are capable of processing real time
multimedia data for applications ranging from simple voice
communications to streaming high definition video. As such,
general-purpose information appliances are replacing pur-
pose-built communications devices (e.g., a telephone). For
example, smart phones can support telephony communica-
tions but they are also capable of text messaging and access-
ing the internet to perform functions including email, web
browsing, remote applications access, and media communi-
cations (e.g., telephony voice, image transfer, music files,
video files, real time video streaming. etc.).

Eachtype of computer is constructed and operates in accor-
dance with one or more communication, processing, and
storage standards. As a result of standardization and with
advances in technology, more and more information content
is being converted into digital formats. For example, more
digital cameras are now being sold than film cameras, thus
producing more digital pictures. As another example, web-
based programming is becoming an alternative to over the air
television broadcasts and/or cable broadcasts. As further
examples, papers, books, video entertainment, home video,

10

15

20

25

30

35

40

45

50

55

60

2

etc. are now being stored digitally, which increases the
demand on the storage function of computers.

A typical computer storage system includes one or more
memory devices aligned with the needs of the various opera-
tional aspects of the computer’s processing and communica-
tion functions. Generally, the immediacy of access dictates
what type of memory device is used. For example, random
access memory (RAM) memory can be accessed in any ran-
dom order with a constant response time, thus it is typically
used for cache memory and main memory. By contrast,
memory device technologies that require physical movement
such as magnetic disks, tapes, and optical discs, have a vari-
able response time as the physical movement can take longer
than the data transfer, thus they are typically used for second-
ary memory (e.g., hard drive, backup memory, etc.).

A computer’s storage system will be compliant with one or
more computer storage standards that include, but are not
limited to, network file system (NFS), flash file system (FFS),
disk file system (DFS), small computer system interface
(SCSI), internet small computer system interface (iSCSI), file
transfer protocol (FTP), and web-based distributed authoring
and versioning (WebDAV). These standards specify the data
storage format (e.g., files, data objects, data blocks, directo-
ries, etc.) and interfacing between the computer’s processing
function and its storage system, which is a primary function
of the computer’s memory controller.

Despite the standardization of the computer and its storage
system, memory devices fail; especially commercial grade
memory devices that utilize technologies incorporating
physical movement (e.g., a disc drive). For example, it is
fairly common for a disc drive to routinely suffer from bit
level corruption and to completely fail after three years of use.
One solution is to utilize a higher-grade disc drive, which
adds significant cost to a computer.

Another solution is to utilize multiple levels of redundant
disc drives to replicate the data into two or more copies. One
such redundant drive approach is called redundant array of
independent discs (RAID). In a RAID device, a RAID con-
troller adds parity data to the original data before storing it
across the array. The parity data is calculated from the original
data such that the failure of a disc will not result in the loss of
the original data. For example, RAID 5 uses three discs to
protect data from the failure of a single disc. The parity data,
and associated redundancy overhead data, reduces the storage
capacity of three independent discs by one third (e.g.,
n-1=capacity). RAID 6 can recover from a loss of two discs
and requires a minimum of four discs with a storage capacity
ofn-2.

While RAID addresses the memory device failure issue, it
is not without its own failure issues that affect its effective-
ness, efficiency and security. For instance, as more discs are
added to the array, the probability of a disc failure increases,
which increases the demand for maintenance. For example,
when a disc fails, it needs to be manually replaced before
another disc fails and the data stored in the RAID device is
lost. To reduce the risk of data loss, data on a RAID device is
typically copied on to one or more other RAID devices. While
this addresses the loss of data issue, it raises a security issue
since multiple copies of data are available, which increases
the chances of unauthorized access. Further, as the amount of
data being stored grows, the overhead of RAID devices
becomes a non-trivial efficiency issue.

US 9,110,593 B2

3
BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING(S)

FIG. 1 is a schematic block diagram of an embodiment of
a computing system in accordance with the present invention;

FIG. 2 is a schematic block diagram of an embodiment of
a computing core in accordance with the present invention;

FIG. 3 is a schematic block diagram of an embodiment of
a distributed storage processing unit in accordance with the
present invention;

FIG. 4 is a schematic block diagram of an embodiment of
a grid module in accordance with the present invention;

FIG. 5 is a diagram of an example embodiment of error
coded data slice creation in accordance with the present
invention;

FIG. 6A is a schematic block diagram of another embodi-
ment of a computing system in accordance with the present
invention;

FIG. 6B is a table illustrating an example of a dispersed
storage (DS) unit key pair to DS unit key assignment table in
accordance with the present invention;

FIG. 7A is a schematic block diagram of another embodi-
ment of a computing system in accordance with the present
invention;

FIG. 7B is a flowchart illustrating an example of rebuilding
a slice in accordance with the present invention;

FIG. 8 is a flowchart illustrating another example of gen-
erating an encrypted partial slice in accordance with the
present invention;

FIG. 9A is a schematic block diagram of another embodi-
ment of a computing system in accordance with the present
invention;

FIG. 9B is a schematic block diagram of another embodi-
ment of a computing system in accordance with the present
invention;

FIG. 9C is a flowchart illustrating an example of updating
software in accordance with the present invention;

FIG. 10A is a flowchart illustrating an example of encrypt-
ing an encoded data slice in accordance with the present
invention;

FIG. 10B is a flowchart illustrating an example of decrypt-
ing an encrypted data slice in accordance with the present
invention;

FIG. 11A is a flowchart illustrating an example of storing a
data segment in accordance with the present invention;

FIG. 11B is a flowchart illustrating an example of retriev-
ing a data segment in accordance with the present invention;

FIG. 12A is a schematic block diagram of another embodi-
ment of a computing system in accordance with the present
invention;

FIG. 12B is a flowchart illustrating an example of securing
a data segment in accordance with the present invention;

FIG. 13A is a schematic block diagram of another embodi-
ment of dispersed storage processing module in accordance
with the present invention;

FIG. 13B is a flowchart illustrating another example of
retrieving a data segment in accordance with the present
invention;

FIG. 14 is a diagram illustrating an example of a segmen-
tation allocation table (SAT) in accordance with the present
invention;

FIG. 15A is a diagram illustrating an example of a slice
name format in accordance with the present invention;

FIG. 15B is a diagram illustrating an example of data
segmentation in accordance with the present invention;

FIG. 15C is a diagram illustrating another example of data
segmentation in accordance with the present invention;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 16A is a schematic block diagram of another embodi-
ment of a computing system in accordance with the present
invention; and

FIG. 16B is a flowchart illustrating an example of storing
segmented data in accordance with the present invention.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 1 is a schematic block diagram of a computing system
10 that includes one or more of a first type of user devices 12,
one or more of a second type of user devices 14, at least one
distributed storage (DS) processing unit 16, at least one DS
managing unit 18, at least one storage integrity processing
unit 20, and a distributed storage network (DSN) memory 22
coupled via a network 24. The network 24 may include one or
more wireless and/or wire lined communication systems; one
or more private intranet systems and/or public internet sys-
tems; and/or one or more local area networks (LAN) and/or
wide area networks (WAN).

The DSN memory 22 includes a plurality of distributed
storage (DS) units 36 for storing data of the system. Each of
the DS units 36 includes a processing module and memory
and may be located at a geographically different site than the
other DS units (e.g., one in Chicago, one in Milwaukee, etc.).

Each ofthe user devices 12-14, the DS processing unit 16,
the DS managing unit 18, and the storage integrity processing
unit 20 may be a portable computing device (e.g., a social
networking device, a gaming device, a cell phone, a smart
phone, a personal digital assistant, a digital music player, a
digital video player, a laptop computer, a handheld computer,
avideo game controller, and/or any other portable device that
includes a computing core) and/or a fixed computing device
(e.g., a personal computer, a computer server, a cable set-top
box, a satellite receiver, a television set, a printer, a fax
machine, home entertainment equipment, a video game con-
sole, and/or any type of home or office computing equip-
ment). Such a portable or fixed computing device includes a
computing core 26 and one or more interfaces 30, 32, and/or
33. An embodiment of the computing core 26 will be
described with reference to FIG. 2.

With respect to the interfaces, each of the interfaces 30, 32,
and 33 includes software and/or hardware to support one or
more communication links via the network 24 indirectly and/
or directly. For example, interfaces 30 support a communica-
tion link (wired, wireless, direct, via a LAN, via the network
24, etc.) between the first type of user device 14 and the DS
processing unit 16. As another example, DSN interface 32
supports a plurality of communication links via the network
24 between the DSN memory 22 and the DS processing unit
16, the first type of user device 12, and/or the storage integrity
processing unit 20. As yet another example, interface 33
supports a communication link between the DS managing
unit 18 and any one of the other devices and/or units 12, 14,
16, 20, and/or 22 via the network 24.

In general and with respect to data storage, the system 10
supports three primary functions: distributed network data
storage management, distributed data storage and retrieval,
and data storage integrity verification. In accordance with
these three primary functions, data can be distributedly stored
in a plurality of physically different locations and subse-
quently retrieved in a reliable and secure manner regardless of
failures of individual storage devices, failures of network
equipment, the duration of storage, the amount of data being
stored, attempts at hacking the data, etc.

The DS managing unit 18 performs distributed network
data storage management functions, which include establish-
ing distributed data storage parameters, performing network

US 9,110,593 B2

5

operations, performing network administration, and/or per-
forming network maintenance. The DS managing unit 18
establishes the distributed data storage parameters (e.g., allo-
cation of virtual DSN memory space, distributed storage
parameters, security parameters, billing information, user
profile information, etc.) for one or more of the user devices
12-14 (e.g., established for individual devices, established for
a user group of devices, established for public access by the
user devices, etc.). For example, the DS managing unit 18
coordinates the creation of a vault (e.g., a virtual memory
block) within the DSN memory 22 for a user device (for a
group of devices, or for public access). The DS managing unit
18 also determines the distributed data storage parameters for
the vault. In particular, the DS managing unit 18 determines a
number of slices (e.g., the number that a data segment of a
data file and/or data block is partitioned into for distributed
storage) and a read threshold value (e.g., the minimum num-
ber of slices required to reconstruct the data segment).

As another example, the DS managing module 18 creates
and stores, locally or within the DSN memory 22, user profile
information. The user profile information includes one or
more of authentication information, permissions, and/or the
security parameters. The security parameters may include
one or more of encryption/decryption scheme, one or more
encryption keys, key generation scheme, and data encoding/
decoding scheme.

As yet another example, the DS managing unit 18 creates
billing information for a particular user, user group, vault
access, public vault access, etc. For instance, the DS manag-
ing unit 18 tracks the number of times a user accesses a private
vault and/or public vaults, which can be used to generate a
per-access bill. In another instance, the DS managing unit 18
tracks the amount of data stored and/or retrieved by a user
device and/or a user group, which can be used to generate a
per-data-amount bill.

The DS managing unit 18 also performs network opera-
tions, network administration, and/or network maintenance.
As at least part of performing the network operations and/or
administration, the DS managing unit 18 monitors perfor-
mance of the devices and/or units of the system 10 for poten-
tial failures, determines the devices” and/or units’ activation
status, determines the devices’ and/or units’ loading, and any
other system level operation that affects the performance
level of the system 10. For example, the DS managing unit 18
receives and aggregates network management alarms, alerts,
errors, status information, performance information, and
messages from the devices 12-14 and/or the units 16, 20, 22.
For example, the DS managing unit 18 receives a simple
network management protocol (SNMP) message regarding
the status of the DS processing unit 16.

The DS managing unit 18 performs the network mainte-
nance by identifying equipment within the system 10 that
needs replacing, upgrading, repairing, and/or expanding. For
example, the DS managing unit 18 determines that the DSN
memory 22 needs more DS units 36 or that one or more of the
DS units 36 needs updating.

The second primary function (i.e., distributed data storage
and retrieval) begins and ends with a user device 12-14. For
instance, if a second type of user device 14 has a data file 38
and/or data block 40 to store in the DSN memory 22, it sends
the data file 38 and/or data block 40 to the DS processing unit
16 via its interface 30. As will be described in greater detail
with reference to FIG. 2, the interface 30 functions to mimic
a conventional operating system (OS) file system interface
(e.g., network file system (NFS), flash file system (FFS), disk
file system (DFS), file transfer protocol (FTP), web-based
distributed authoring and versioning (WebDAV), etc.) and/or

10

15

20

25

30

35

40

45

50

55

60

65

6

a block memory interface (e.g., small computer system inter-
face (SCSI), internet small computer system interface
(iSCSI), etc.). In addition, the interface 30 may attach a user
identification code (ID) to the data file 38 and/or data block
40.

The DS processing unit 16 receives the data file 38 and/or
data block 40 via its interface 30 and performs a distributed
storage (DS) process 34 thereon (e.g., an error coding dis-
persal storage function). The DS processing 34 begins by
partitioning the data file 38 and/or data block 40 into one or
more data segments, which is represented as Y data segments.
For example, the DS processing 34 may partition the data file
38 and/or data block 40 into a fixed byte size segment (e.g., 2"
to 2” bytes, where n=>2) or a variable byte size (e.g., change
byte size from segment to segment, or from groups of seg-
ments to groups of segments, etc.).

For eachoftheY data segments, the DS processing 34 error
encodes (e.g., forward error correction (FEC), information
dispersal algorithm, or error correction coding) and slices (or
slices then error encodes) the data segment into a plurality of
error coded (EC) data slices 42-48, which is represented as X
slices per data segment. The number of slices (X) per seg-
ment, which corresponds to a number of pillars n, is set in
accordance with the distributed data storage parameters and
the error coding scheme. For example, if a Reed-Solomon (or
other FEC scheme) is used in an n/k system, then a data
segment is divided into n slices, where k number of slices is
needed to reconstruct the original data (i.e., k is the thresh-
old). As a few specific examples, the n/k factor may be 5/3;
6/4; 8/6; 8/5; 16/10.

For each EC slice 42-48, the DS processing unit 16 creates
a unique slice name and appends it to the corresponding EC
slice 42-48. The slice name includes universal DSN memory
addressing routing information (e.g., virtual memory
addresses in the DSN memory 22) and user-specific informa-
tion (e.g., user ID, file name, data block identifier, etc.).

The DS processing unit 16 transmits the plurality of EC
slices 42-48 to a plurality of DS units 36 of the DSN memory
22 via the DSN interface 32 and the network 24. The DSN
interface 32 formats each of the slices for transmission via the
network 24. For example, the DSN interface 32 may utilize an
internet protocol (e.g., TCP/IP, etc.) to packetize the EC slices
42-48 for transmission via the network 24.

The number of DS units 36 receiving the EC slices 42-48 is
dependent on the distributed data storage parameters estab-
lished by the DS managing unit 18. For example, the DS
managing unit 18 may indicate that each slice is to be stored
in a different DS unit 36. As another example, the DS man-
aging unit 18 may indicate that like slice numbers of different
data segments are to be stored in the same DS unit 36. For
example, the first slice of each of the data segments is to be
stored in a first DS unit 36, the second slice of each of the data
segments is to be stored in a second DS unit 36, etc. In this
manner, the data is encoded and distributedly stored at physi-
cally diverse locations to improve data storage integrity and
security.

Each DS unit 36 that receives an EC slice 42-48 for storage
translates the virtual DSN memory address of the slice into a
local physical address for storage. Accordingly, each DS unit
36 maintains a virtual to physical memory mapping to assist
in the storage and retrieval of data.

The first type of user device 12 performs a similar function
to store data in the DSN memory 22 with the exception that it
includes the DS processing. As such, the device 12 encodes
and slices the data file and/or data block it has to store. The
device then transmits the slices 11 to the DSN memory via its
DSN interface 32 and the network 24.

US 9,110,593 B2

7

For a second type of user device 14 to retrieve a data file or
data block from memory, it issues a read command via its
interface 30 to the DS processing unit 16. The DS processing
unit 16 performs the DS processing 34 to identify the DS units
36 storing the slices of the data file and/or data block based on
the read command. The DS processing unit 16 may also
communicate with the DS managing unit 18 to verify that the
user device 14 is authorized to access the requested data.

Assuming that the user device is authorized to access the
requested data, the DS processing unit 16 issues slice read
commands to at least a threshold number of the DS units 36
storing the requested data (e.g., to at least 10 DS units for a
16/10error coding scheme). Each of the DS units 36 receiving
the slice read command, verifies the command, accesses its
virtual to physical memory mapping, retrieves the requested
slice, or slices, and transmits it to the DS processing unit 16.

Once the DS processing unit 16 has received a read thresh-
old number of slices for a data segment, it performs an error
decoding function and de-slicing to reconstruct the data seg-
ment. When Y number of data segments has been recon-
structed, the DS processing unit 16 provides the data file 38
and/or data block 40 to the user device 14. Note that the first
type of user device 12 performs a similar process to retrieve a
data file and/or data block.

The storage integrity processing unit 20 performs the third
primary function of data storage integrity verification. In
general, the storage integrity processing unit 20 periodically
retrieves slices 45, and/or slice names, of a data file or data
block of a user device to verify that one or more slices have
not been corrupted or lost (e.g., the DS unit failed). The
retrieval process mimics the read process previously
described.

If the storage integrity processing unit 20 determines that
one or more slices is corrupted or lost, it rebuilds the cor-
rupted or lost slice(s) in accordance with the error coding
scheme. The storage integrity processing unit 20 stores the
rebuild slice, or slices, in the appropriate DS unit(s) 36 in a
manner that mimics the write process previously described.

FIG. 2 is a schematic block diagram of an embodiment of
a computing core 26 that includes a processing module 50, a
memory controller 52, main memory 54, a video graphics
processing unit 55, an input/output (IO) controller 56, a
peripheral component interconnect (PCI) interface 58, an 10
interface 60, at least one 10 device interface module 62, a read
only memory (ROM) basic input output system (BIOS) 64,
and one or more memory interface modules. The memory
interface module(s) includes one or more of a universal serial
bus (USB) interface module 66, a host bus adapter (HBA)
interface module 68, a network interface module 70, a flash
interface module 72, a hard drive interface module 74, and a
DSN interface module 76. Note the DSN interface module 76
and/or the network interface module 70 may function as the
interface 30 of the user device 14 of FIG. 1. Further note that
the 10O device interface module 62 and/or the memory inter-
face modules may be collectively or individually referred to
as 10 ports.

FIG. 3 is a schematic block diagram of an embodiment of
adispersed storage (DS) processing module 34 of user device
12 and/or of the DS processing unit 16. The DS processing
module 34 includes a gateway module 78, an access module
80, a grid module 82, and a storage module 84. The DS
processing module 34 may also include an interface 30 and
the DSnet interface 32 or the interfaces 68 and/or 70 may be
part of user device 12 or of the DS processing unit 16. The DS
processing module 34 may further include a bypass/feedback
path between the storage module 84 to the gateway module

10

15

20

25

30

35

40

45

50

55

60

65

8

78. Note that the modules 78-84 of the DS processing module
34 may be in a single unit or distributed across multiple units.

In an example of storing data, the gateway module 78
receives an incoming data object that includes a user ID field
86, an object name field 88, and the data object field 40 and
may also receive corresponding information that includes a
process identifier (e.g., an internal process/application ID),
metadata, a file system directory, a block number, a transac-
tion message, a user device identity (ID), a data object iden-
tifier, a source name, and/or user information. The gateway
module 78 authenticates the user associated with the data
object by veritying the user ID 86 with the DS managing unit
18 and/or another authenticating unit.

When the user is authenticated, the gateway module 78
obtains user information from the management unit 18, the
user device, and/or the other authenticating unit. The user
information includes a vault identifier, operational param-
eters, and user attributes (e.g., user data, billing information,
etc.). A vault identifier identifies a vault, which is a virtual
memory space that maps to a set of DS storage units 36. For
example, vault 1 (i.e., user 1’s DSN memory space) includes
eight DS storage units (X=8 wide) and vault 2 (i.e., user 2’s
DSN memory space) includes sixteen DS storage units (X=16
wide). The operational parameters may include an error cod-
ing algorithm, the width n (number of pillars X or slices per
segment for this vault), a read threshold T, a write threshold,
an encryption algorithm, a slicing parameter, a compression
algorithm, an integrity check method, caching settings, par-
allelism settings, and/or other parameters that may be used to
access the DSN memory layer.

The gateway module 78 uses the user information to assign
a source name 35 to the data. For instance, the gateway
module 78 determines the source name 35 of the data object
40 based on the vault identifier and the data object. For
example, the source name may contain a file identifier (ID), a
vault generation number, a reserved field, and a vault identi-
fier (ID). As another example, the gateway module 78 may
generate the file ID based on a hash function of the data object
40. Note that the gateway module 78 may also perform mes-
sage conversion, protocol conversion, electrical conversion,
optical conversion, access control, user identification, user
information retrieval, traffic monitoring, statistics generation,
configuration, management, and/or source name determina-
tion.

The access module 80 receives the data object 40 and
creates a series of data segments 1 through Y 90-92 in accor-
dance with a data storage protocol (e.g., file storage system, a
block storage system, and/or an aggregated block storage
system). The number of segments Y may be chosen or ran-
domly assigned based on a selected segment size and the size
of the data object. For example, if the number of segments is
chosen to be a fixed number, then the size of the segments
varies as a function of the size of the data object. For instance,
if the data object is an image file of 4,194,304 eight bit bytes
(e.g., 33,554,432 bits) and the number of segments Y=131,
072, then each segment is 256 bits or 32 bytes. As another
example, if segment size is fixed, then the number of seg-
ments Y varies based on the size of data object. For instance,
if the data object is an image file of 4,194,304 bytes and the
fixed size of each segment is 4,096 bytes, then the number of
segments Y=1,024. Note that each segment is associated with
the same source name.

The grid module 82 receives the data segments and may
manipulate (e.g., compression, encryption, cyclic redun-
dancy check (CRC), etc.) each of the data segments before
performing an error coding function of the error coding dis-
persal storage function to produce a pre-manipulated data

US 9,110,593 B2

9

segment. After manipulating a data segment, if applicable, the
grid module 82 error encodes (e.g., Reed-Solomon, Convo-
Iution encoding, Trellis encoding, etc.) the data segment or
manipulated data segment into X error coded data slices
42-44.

The value X, or the number of pillars (e.g., X=16), is
chosen as a parameter of the error coding dispersal storage
function. Other parameters of the error coding dispersal func-
tion include a read threshold T, a write threshold W, etc. The
read threshold (e.g., T=10, when X=16) corresponds to the
minimum number of error-free error coded data slices
required to reconstruct the data segment. In other words, the
DS processing module 34 can compensate for X-T (e.g.,
16-10=6) missing error coded data slices per data segment.
The write threshold W corresponds to a minimum number of
DS storage units that acknowledge proper storage of their
respective data slices before the DS processing module indi-
cates proper storage of the encoded data segment. Note that
the write threshold is greater than or equal to the read thresh-
old for a given number of pillars (X).

For each data slice of a data segment, the grid module 82
generates a unique slice name 37 and attaches it thereto. The
slice name 37 includes a universal routing information field
and a vault specific field and may be 48 bytes (e.g., 24 bytes
for each of the universal routing information field and the
vault specific field). As illustrated, the universal routing infor-
mation field includes a slice index, a vault ID, a vault genera-
tion, and a reserved field. The slice index is based on the pillar
number and the vault ID and, as such, is unique for each pillar
(e.g., slices of the same pillar for the same vault for any
segment will share the same slice index). The vault specific
field includes a data name, which includes a file ID and a
segment number (e.g., a sequential numbering of data seg-
ments 1-Y of a simple data object or a data block number).

Prior to outputting the error coded data slices of a data
segment, the grid module may perform post-slice manipula-
tion on the slices. If enabled, the manipulation includes slice
level compression, encryption, CRC, addressing, tagging,
and/or other manipulation to improve the effectiveness of the
computing system.

When the error coded data slices of a data segment are
ready to be outputted, the grid module 82 determines which of
the DS storage units 36 will store the EC data slices based on
a dispersed storage memory mapping associated with the
user’s vault and/or DS storage unit attributes. The DS storage
unit attributes may include availability, self-selection, perfor-
mance history, link speed, link latency, ownership, available
DSN memory, domain, cost, a prioritization scheme, a cen-
tralized selection message from another source, a lookup
table, data ownership, and/or any other factor to optimize the
operation of the computing system. Note that the number of
DS storage units 36 is equal to or greater than the number of
pillars (e.g., X) so that no more than one error coded data slice
of'the same data segment is stored on the same DS storage unit
36. Further note that EC data slices of the same pillar number
but of different segments (e.g., EC data slice 1 of data segment
1 and EC data slice 1 of data segment 2) may be stored on the
same or different DS storage units 36.

The storage module 84 performs an integrity check on the
outbound encoded data slices and, when successful, identifies
aplurality of DS storage units based on information provided
by the grid module 82. The storage module 84 then outputs
the encoded data slices 1 through X of each segment 1
through'Y to the DS storage units 36. Each of the DS storage
units 36 stores its EC data slice(s) and maintains a local

20

40

45

50

60

10
virtual DSN address to physical location table to convert the
virtual DSN address of the EC data slice(s) into physical
storage addresses.

In an example of a read operation, the user device 12 and/or
14 sends a read request to the DS processing unit 16, which
authenticates the request. When the request is authentic, the
DS processing unit 16 sends a read message to each of the DS
storage units 36 storing slices of the data object being read.
The slices are received via the DSnet interface 32 and pro-
cessed by the storage module 84, which performs a parity
check and provides the slices to the grid module 82 when the
parity check was successtul. The grid module 82 decodes the
slices in accordance with the error coding dispersal storage
function to reconstruct the data segment. The access module
80 reconstructs the data object from the data segments and the
gateway module 78 formats the data object for transmission
to the user device.

FIG. 4 is a schematic block diagram of an embodiment of
a grid module 82 that includes a control unit 73, a pre-slice
manipulator 75, an encoder 77, a slicer 79, a post-slice
manipulator 81, a pre-slice de-manipulator 83, a decoder 85,
a de-slicer 87, and/or a post-slice de-manipulator 89. Note
that the control unit 73 may be partially or completely exter-
nal to the grid module 82. For example, the control unit 73
may be part of the computing core at a remote location, part of
auser device, part of the DS managing unit 18, or distributed
amongst one or more DS storage units.

In an example of write operation, the pre-slice manipulator
75 receives a data segment 90-92 and a write instruction from
anauthorized user device. The pre-slice manipulator 75 deter-
mines if pre-manipulation of the data segment 90-92 is
required and, if so, what type. The pre-slice manipulator 75
may make the determination independently or based on
instructions from the control unit 73, where the determination
is based on a computing system-wide predetermination, a
table lookup, vault parameters associated with the user iden-
tification, the type of data, security requirements, available
DSN memory, performance requirements, and/or other meta-
data.

Once a positive determination is made, the pre-slice
manipulator 75 manipulates the data segment 90-92 in accor-
dance with the type of manipulation. For example, the type of
manipulation may be compression (e.g., Lempel-Ziv-Welch,
Huffman, Golomb, fractal, wavelet, etc.), signatures (e.g.,
Digital Signature Algorithm (DSA), Elliptic Curve DSA,
Secure Hash Algorithm, etc.), watermarking, tagging,
encryption (e.g., Data Encryption Standard, Advanced
Encryption Standard, etc.), adding metadata (e.g., time/date
stamping, user information, file type, etc.), cyclic redundancy
check (e.g., CRC32), and/or other data manipulations to pro-
duce the pre-manipulated data segment.

The encoder 77 encodes the pre-manipulated data segment
92 using a forward error correction (FEC) encoder (and/or
other type of erasure coding and/or error coding) to produce
an encoded data segment 94. The encoder 77 determines
which forward error correction algorithm to use based on a
predetermination associated with the user’s vault, a time
based algorithm, user direction, DS managing unit direction,
control unit direction, as a function of the data type, as a
function of the data segment 92 metadata, and/or any other
factor to determine algorithm type. The forward error correc-
tion algorithm may be Golay, Multidimensional parity, Reed-
Solomon, Hamming, Bose Ray Chauduri Hocquenghem
(BCH), Cauchy-Reed-Solomon, or any other FEC encoder.
Note that the encoder 77 may use a different encoding algo-

US 9,110,593 B2

11

rithm for each data segment 92, the same encoding algorithm
for the data segments 92 of a data object, or a combination
thereof.

The encoded data segment 94 is of greater size than the data
segment 92 by the overhead rate of the encoding algorithm by
a factor of X/T, where X is the width or number of slices, and
T is the read threshold. In this regard, the corresponding
decoding process can accommodate at most X-T missing EC
data slices and still recreate the data segment 92. For example,
if X=16 and T=10, then the data segment 92 will be recover-
able as long as 10 or more EC data slices per segment are not
corrupted.

The slicer 79 transforms the encoded data segment 94 into
EC data slices in accordance with the slicing parameter from
the vault for this user and/or data segment 92. For example, if
the slicing parameter is X=16, then the slicer 79 slices each
encoded data segment 94 into 16 encoded slices.

The post-slice manipulator 81 performs, if enabled, post-
manipulation on the encoded slices to produce the EC data
slices. If enabled, the post-slice manipulator 81 determines
the type of post-manipulation, which may be based on a
computing system-wide predetermination, parameters in the
vault for this user, a table lookup, the user identification, the
type of data, security requirements, available DSN memory,
performance requirements, control unit directed, and/or other
metadata. Note that the type of post-slice manipulation may
include slice level compression, signatures, encryption, CRC,
addressing, watermarking, tagging, adding metadata, and/or
other manipulation to improve the effectiveness of the com-
puting system.

In an example of a read operation, the post-slice de-ma-
nipulator 89 receives at least a read threshold number of EC
data slices and performs the inverse function of the post-slice
manipulator 81 to produce a plurality of encoded slices. The
de-slicer 87 de-slices the encoded slices to produce an
encoded data segment 94. The decoder 85 performs the
inverse function of the encoder 77 to recapture the data seg-
ment 90-92. The pre-slice de-manipulator 83 performs the
inverse function of the pre-slice manipulator 75 to recapture
the data segment 90-92.

FIG. 5 is a diagram of an example of slicing an encoded
data segment 94 by the slicer 79. In this example, the encoded
data segment 94 includes thirty-two bits, but may include
more or less bits. The slicer 79 disperses the bits of the
encoded data segment 94 across the EC data slices in a pattern
as shown. As such, each EC data slice does not include con-
secutive bits of the data segment 94 reducing the impact of
consecutive bit failures on data recovery. For example, if EC
data slice 2 (which includes bits 1, 5, 9,13, 17, 25, and 29) is
unavailable (e.g., lost, inaccessible, or corrupted), the data
segment can be reconstructed from the other EC data slices
(e.g., 1, 3 and 4 for a read threshold of 3 and a width of 4).

FIG. 6A is a schematic block diagram of another embodi-
ment of a computing system. The system includes a plurality
of'sites 1-4 that includes, in totality, a set of dispersed storage
(DS) units associated with a set of encoded data slices. The set
of'encoded data slices is produced by dispersed storage error
encoding a data segment. Each such site of the plurality of
sites 1-4 includes at least one DS unit of the set of DS units,
wherein the at least one DS unit stores a corresponding
encoded data slice of the set of encoded data slices. For
example, site 1 includes DS units 1-2, site 2 includes DS units
3-4, site 3 includes DS units 5-6, and site 4 includes DS units
7-8 when a pillar width is 8.

Rebuilding an encoded data slice requires at least a decode
threshold number of encoded data slices of a set of encoded
data slices associated with the encoded data slice to be rebuilt.

30

40

45

12

For example, DS unit 2 requests a decode threshold number of
encoded data slices from DS units 1, 3, 4, 5, and 6 when DS
unit 2 is associated with an encoded data slice to be rebuiltand
the decode threshold number is 5. Each DS unit of DS units 1,
3,4, 5, and 6 sends a corresponding encoded data slice (e.g.,
DS unit 4 sends a pillar 4 encoded data slice) to DS unit 2. DS
unit 2 receives the decode threshold number of encoded data
slices and dispersed storage error decodes the decode thresh-
old number of encoded data slices to reproduce a data seg-
ment. DS unit 2 dispersed storage error encodes the data
segment to produce the set of encoded data slices. DS unit 2
selects the encoded data slice associated with DS unit 2 (e.g.,
pillar 2) as a copy of the encoded data slice to be rebuilt and
stores the encoded data slice to be rebuilt.

Alternatively, DS unit 2 requests a decode threshold num-
ber of slice partials from DS units 1, 3, 4, 5, and 6 when DS
unit 2 is associated with the encoded data slice to be rebuilt
and the decode threshold number is 5. Each DS unit of DS
units 1, 3, 4, 5, and 6 generates a slice partial (e.g., DS unit 4
generates a pillar 4 slice partial) based on rebuilding param-
eters and an encoded data slice associated with the DS unit.
The rebuilding parameters includes one or more of the dis-
persed storage error coding parameters, such as a pillar width
(e.g., 8), a decode threshold (e.g., 5), a pillar index to be
rebuilt (e.g., pillar 2), the rebuilding participant list (e.g., DS
units 1, 3, 4, 5, and 6), a rebuilding topology (e.g., DS unit 1
to DS unit 2, DS unit 3 to DS unit 4 to DS unit 2, DS unit 5 to
DS unit 6 to DS unit 2), an encoding matrix, a DS unit pair key
indicator, a DS unit key assignment, Diffie Hellman param-
eters, and an encryption algorithm indicator. For example, DS
unit 4 generates partial (2,4)=(inverted square matrix of an
encoding matrix utilizing participating rows 1, 3, 4, 5, 6)*(a
data matrix with a pillar 4 encoded data slice in a third row)*(a
second row of the encoding matrix corresponding to a pillar
number of the encoded data slice to be rebuilt).

Next, each DS unit of DS units 1, 3, 4, 5, and 6 encrypts the
slice partial corresponding to the DS unit utilizing an encryp-
tion function, wherein the encryption function utilizes an
encryption algorithm and one or more keys. The encryption
algorithm includes performing an exclusive or (XOR) logical
function on the slice partial and the one or more keys. Each
key of the one or more keys may be utilized an even number
of times by the DS unit and at least one other DS unit of DS
units 1, 3, 4, 5, and 6 to enable subsequent decryption (e.g.,
XOR) when the decode threshold number of slice partials are
combined to reproduce the encoded data slice to be rebuilt.
For instance, each DS unit may utilize each possible key
enabled for use by the DS unit. Each key of the one or more
keys may be obtained by one or more of a retrieval request, a
message, and generation. For example, DS unit 3 utilizes a
shared secret key (K3-5) shared between DS units 3 and 5, DS
unit 5 utilizes the shared secret key between DS units 3 and 5,
DS unit 4 utilizes a shared secret key (K1-4) between DS units
1 and 4, DS unit 6 utilizes a shared secret key (K1-6) between
DS units 1 and 6, and DS unit 1 utilizes the shared secret key
between DS units 1 and 4 the shared secret key between DS
units 1 and 6 in accordance with DS unit pair key indicators
and a DS unit key assignment of the rebuilding parameters.

Each DS unit may generate one or more keys associated
with one or more DS unit pairings utilizing a Diffie Hellman
method and Diffie Hellman parameters of the rebuilding
parameters. As an instance of encrypting a slice partial cor-
responding to DS unit 3, DS unit 3 produces an encrypted
slice partial in accordance with a formula: (K3-5)®partial
(2,3). As an instance of encrypting a slice partial correspond-
ing to DS unit 1, DS unit 1 produces an encrypted slice partial
in accordance with a formula: (K1-4)(K1-6)Dpartial (2,1).

US 9,110,593 B2

13

As an instance of encrypting a slice partial corresponding to
DS unit 4, DS unit 4 produces an encrypted slice partial in
accordance with a formula: (K1-4)®partial (2,4).

Next, each DS unit outputs an encrypted slice partial in
accordance with a rebuilding topology of the rebuilding
parameters. For example, DS unit 1 sends the encrypted slice
partial associated with DS unit 1 directly to DS unit 2 and DS
unit 3 sends the encrypted slice partial associated with DS
unit 3 to DS unit 4 (e.g., at the same site) in accordance with
the rebuilding topology. DS unit 4 receives the encrypted slice
partial associated with DS unit 3 and combines the encrypted
slice partial associated with DS unit 3 with the encrypted slice
partial associated with DS unit 4 in accordance with the
rebuilding topology. For instance, DS unit 4 combines the
encrypted slice partial associated with DS unit 3 with the
encrypted slice partial associated with DS unit 4 utilizing a
XOR function in accordance with the formula: combined
encrypted slice partial=(K3-5)®Ppartial (2,3)P(K1-4)Ppar-
tial (2,4). DS unit 4 sends the combined encrypted slice partial
to DS unit 2 in accordance with the rebuilding topology.

Next, DS unit 2 receives the decode threshold number of
encrypted slice partials as one or more encrypted slice partials
and/or one or more combined encrypted slice partials. DS unit
2 combines the one or more encrypted slice partials and/or the
one or more combined encrypted slice partials utilizing a
decryption algorithm (e.g., XOR) to reproduce the encoded
data slice to be rebuilt. For instance, DS unit 2 reproduces the
encoded data slice to be rebuilt utilizing a decryption algo-
rithm in accordance with a formula: rebuilt encoded data slice
2=(K1-4)P(K1-6)Ppartial(2,1 ¥B(K3-5)Dpartial(2,3) D
(K1-4)®partial (2,4)B(K3-5)Ppartial (2,5)D(K1-6)Ppar-
tial (2,6). The decryption algorithm cancels the even number
utilization of each key to produce an XOR sequence of the
slice partials. The XOR of the slice partials reproduces the
encoded data slice to be rebuilt. In such an alternative, infor-
mation leakage is minimized as encoded data slices are not
exposed and slice partials are encrypted.

FIG. 6B is a table illustrating an example of a dispersed
storage (DS) unit key pair to DS unit key assignment table.
The table includes a DS unit pair key field 102, and a DS unit
key assignment field 104. The DS unit pair key field 102
includes a plurality of DS unit pair keys entries, wherein each
key entry of the plurality of DS unit pair key entries includes
two DS unit identifiers (IDs) of a corresponding DS unit pair
enabled to utilize the key entry. For example, an entry includ-
ing K1-3 corresponds to a DS unit pair key to be utilized only
by DS units 1 and 3. For instance, key K1-3 is generated by
DS units 1 and 3 utilizing a Diffie Hellman approach. A
number of entries of the DS unit pair key field may be based
on a security requirement, a number of DS units, a rebuilding
topology, and a network topology.

The DS unit key assignment field 104 includes two or more
DS unit identifier (ID) fields corresponding to two or more DS
units included in a DS unit storage set providing key assign-
ments. An entry (e.g., “X”’) associated with a DS unit signifies
that the DS unit is assigned to utilize a corresponding DS unit
pairkey of a corresponding row of the table. For example, two
X entries in a column corresponding to DS unit 1 signifies that
DS unit 1 is to utilize keys K1-4 and key K1-6.

The key assignments may be assigned in a variety of ways
based on the rebuilding topology and assignment goals,
wherein such assignment goals include one or more of a
security goal, a performance goal, and a processing loading
goal. For example, assigned keys should not include akey that
is shared between a DS unit pair when a first DS unit of the DS
unit pair sends an encrypted slice partial to a second DS unit
of the DS unit pair to avoid information leakage that may

20

40

45

14

occur when the second DS unit combines the encrypted slice
partials. As another example, each assigned key should be
utilized an even number of times such that each assigned key
cancels out (e.g., via an XOR function) when a requesting
entity decodes encrypted slice partials to reproduce an
encoded data slice to be rebuilt. A method to determine and
utilize keys is discussed in greater detail with reference to
FIGS. 7A-8.

FIG. 7A is a schematic block diagram of another embodi-
ment of' a computing system that includes a requesting entity
105, a computing device 106, and a plurality of dispersed
storage (DS) units 36. The requesting entity 105 may be
implemented as at least one of a DS processing unit, a user
device, another DS unit 36, a storage integrity processing
unit, and a DS managing unit 18 of a distributed storage
network (DSN). For example, the requesting entity 105
includes the other DS unit 36 that is rebuilding an encoded
data slice. The computing device 106 may be implemented as
atleast one of'a DS unit 36 and a user device. For example, the
computing device 106 is a DS unit 36 of a decode threshold
number of DS units 36 that includes at least some of the
plurality of DS units 36, wherein the decode threshold num-
ber of DS units 36 assist the requesting entity 105 to rebuild
the encoded data slice. The computing device 106 includes a
DS module 111 and a memory 112. The memory 112 may be
implemented utilizing one or more memory devices includ-
ing one or more of a FLASH memory, random access
memory, a magnetic disk drive, and an optical disk drive. The
computing device 106 may utilize the memory 112 when the
computing device is the DS unit 36 to facilitate storing of one
or more encoded data slices. The DS module 111 includes a
receive request module 113, a generate partial slice module
114, and a encrypt partial slice module 115.

The receive request module 113, when operable within the
computing device 106, receives a rebuild request 116 regard-
ing an encoded data slice. For example, the receive request
module 113 receives the rebuild request 116 from the request-
ing entity 105 when the requesting entity 105 facilitates
rebuilding of the encoded data slice by issuing a rebuild
request regarding the encoded data slice to at least some of a
set of DS units 36 of the plurality of DS units 36. The rebuild
request includes one or more of rebuilding participant iden-
tifiers (IDs), Diffie Hellman parameters, a rebuilding topol-
ogy, a number of keys to utilize indicator, a DS unit pair key
indicator, a DS unit key assignment, a pillar index to rebuild
indicator, a slice name list, a requesting entity identifier (ID),
a key generation algorithm, a key generation algorithm ID,
and rebuilding parameters. The rebuilding parameters
includes one or more of a pillar width, a decode threshold
number, a pillar index to be rebuilt, a rebuilding participant
list (e.g., DS units IDs), a rebuilding topology (e.g., DS unit 1
to DS unit 2, DS unit 3 to DS unit 4 to DS unit 2, DS unit 5 to
DS unit 6 to DS unit 2), an encoding matrix, a square matrix,
and an inverted square matrix.

The generate partial slice module 114, when operable
within the computing device, generates a partial slice 117
corresponding to the encoded data slice to be rebuilt based on
an encoded data slice 118 that includes one ofa set of encoded
data slices stored by the computing device 106 (e.g., a DS unit
36) that includes the DS module 111. For example, the gen-
erate partial slice module 114 identifies the encoded data slice
118 based on the rebuild request 116, retrieves the encoded
data slice 118 from memory 112, and generates the partial
slice 117 utilizing the encoded data slice 118 based on the
rebuild request 116 (e.g., based on rebuilding parameters).
The generating the partial slice 117 includes one or more of
obtaining an encoding matrix utilized to generate the encoded

US 9,110,593 B2

15

data slice (e.g., extract from the rebuild request 116, retrieve
from memory 112), reducing the encoding matrix to produce
a square matrix that exclusively includes rows identified in
the partial rebuilding request (e.g., slice pillars associated
with participating DS units of a decode threshold number of
DS units), inverting the square matrix to produce an inverted
matrix (e.g., alternatively, may extract the inverted matrix
from the rebuild request 116), matrix multiplying the inverted
matrix by the encoded data slice 118 to produce a vector, and
matrix multiplying the vector by a row of the encoding matrix
corresponding to the encoded data slice to be rebuilt (e.g.,
alternatively, may extract the row from the rebuild request
116) to produce the partial slice 117. For example, when a
pillar 2 encoded data slice is to be rebuilt, a DS unit 4 gener-
ates partial slice (2,4)=(inverted square matrix of an encoding
matrix utilizing participating rows 1, 3, 4, 5, 6)*(a data matrix
with a pillar 4 encoded data slice in a third row)*(a second
row of the encoding matrix corresponding to a pillar number
of'the encoded data slice to be rebuilt) when a decode thresh-
old is 5 and a pillar width is 8.

The encrypt partial slice module 115, when operable
within the computing device 106, encrypts the partial slice
117 using an encryption key of a set of encryption keys to
produce an encrypted partial slice 119, wherein the encryp-
tion key is used by another DS module 111 of another DS unit
36 to produce another encrypted partial slice 119. The encrypt
partial slice module 115 is further operable to generate, in
conjunction with the other DS module 111, a shared secret
and generate the encryption key based on the shared secret.
The generating of the shared secret may include one or more
of'a lookup, receiving the shared secret, and utilizing a Diffie
Hellman approach (e.g., each DS module 111 utilizes Diffie
Hellman parameters to produce public values which are
exchanged and utilized in a Diffie Hellman function to pro-
duce the shared secret).

The encryption key may be generated by masking the
shared secret to produce a masked shared secret and expand-
ing the shared secret and/or the masked shared secret. The
masking includes performing a deterministic function on at
least one of the shared secret and one or more key elements.
The deterministic function includes at least one of a hash
algorithm (e.g., message digest (MD)-5, secure hash algo-
rithm (SHA)-1, SHA-256, SHA 512), a hash-based message
authentication code (HMAC, e.g., HMAC-MD-5), and a
mask generating function (MGF). A key element of the one or
more key elements includes at least one of a source name, a
slice revision number, a requesting entity identifier (ID), and
a rebuilding participants list (e.g., of the at least some of the
DS units). The expanding includes expanding the shared
secret and/or the masked shared secret to a length substan-
tially the same as the partial slice 117 utilizing at least one of
the MGF, a stream cipher with hash/HMAC output (e.g.,
when stream ciphers uses XOR), a block cipher (e.g.,
advanced encryption standard AES, data encryption standard
DES) using encryption mode such as or more of output feed-
back (OFB), cipher feedback (CFB), and counter mode
(CTR) with hash/HMAC output.

The encrypt partial slice module 115 is further operable to
exclusive OR the partial slice 117 with the encryption key of
the set of encryption keys to produce the encrypted partial
slice 119. The encrypt partial slice module 115 is further
operable to assign multiple encryption keys of the set of
encryption keys to the DS module 111, wherein each of the
multiple encryption keys is used by another DS unit 36 of a
plurality of DS units 36. For example, a first DS unit utilizes
two encryption keys that includes encryption key 3 and
encryption key 7, a second DS unit utilizes encryption key 3,

5

10

15

20

25

30

35

40

45

50

55

60

65

16

and a third DS unit utilizes encryption key 7 such that each
encryption key is utilized an even number of times.

The encrypt partial slice module 115 is further operable to
encrypt a first partial slice of an array of partial slices (e.g.,
from the at least some of the DS units of the plurality of DS
units 36) using a first encryption key of the set of encryption
keys to produce a first encrypted partial slice and exclusive
OR the first encrypted partial slice and a second encrypted
partial slice to produce a combined encrypted partial slice,
wherein another DS module encrypts a second partial slice of
the array of partial slices using a second encryption key of the
set of encryption keys to produce the second encrypted partial
slice. For example, a second DS unit produces the second
encrypted partial slice and sends the second encrypted partial
slice to a first DS unit. Next, the first DS unit produces the first
encrypted partial slice, exclusive ORs the first encrypted par-
tial slice with the second encrypted partial slice to produce the
combined encrypted partial slice, and outputs the combined
encrypted partial slice to the requesting entity 105. The
requesting entity 105 is operable to receive an array of
encrypted partial slices 119 from the at least some of the
plurality of DS units and exclusive OR the array of encrypted
partial slices to reproduce the encoded data slice.

FIG. 7B is a flowchart illustrating an example of rebuilding
a slice. The method begins at step 120 where a processing
module of a requesting entity issues a rebuild request regard-
ing an encoded data slice to at least some of'a set of distributed
storage (DS) units. The requesting entity includes a DS unit of
the set of DS units, wherein the DS unit is to store the encoded
data slice to be rebuilt. In response to the rebuild request, the
method continues at step 122 where a processing module of
each of at least some of the DS units of the set of DS units
generates a partial slice corresponding to the encoded data
slice to be rebuilt based on one of a set of encoded data slices
stored by the respective DS unit to produce an array of partial
slices.

The method continues at step 124 where a processing mod-
ule of a DS unit encrypts the array of partial slices using a set
of'encryption keys, wherein each encryption key of the set of
encryption keys is used 2*n times to produce an array of
encrypted partial slices, where n is an integer greater than or
equalto 1. There is a variety of ways to do the encrypting. For
example, the encrypting includes arranging, when n equals 1,
at least some of DS units into DS unit pairings, wherein each
DS unit of a DS unit pairing uses a same encryption key of the
set of encryption keys. As another example, the encrypting
includes, a DS unit pairing generating a shared secret and
generating the same encryption key based on the shared
secret. As yet another example, the encrypting includes, when
n equals 1 and the DS units includes an odd number of DS
units, pairing one of the DS units with two other DS units to
use a first encryption key of the set of encryption keys and
arranging remaining DS units into DS unit pairings. As a
further example, the encrypting includes a DS unit exclusive
ORing a partial slice of the array of partial slices with an
encryption key to produce an encrypted partial slice.

As an even further example, the encrypting includes
assigning multiple encryption keys of the set of encryption
keys to a DS unit and assigning each of the multiple encryp-
tion keys to at least one other DS unit. As a still further
example, the encrypting includes encrypting, by a DS unit, a
first partial slice using a first encryption to produce a first
encrypted partial slice, encrypting, by another DS unit, a
second partial slice using a second encryption key to produce
a second encrypted partial slice, and exclusive ORing, by one

US 9,110,593 B2

17

or the other DS unit, the first encrypted partial slice and the
second encrypted partial slice to produce a combined
encrypted partial slice.

The method continues at step 126 where the processing
module of the requesting entity rebuilds the encoded data
slice from the array of encrypted partial slices. The rebuilding
includes exclusive ORing the array of encryption partial
slices to produce the encoded data slice. The rebuilding fur-
ther includes decrypting the array of encrypted partial slices
based on the set of encryption keys to produce the array of
partial slices and decoding the array of partial slices to rebuild
the encode data slice.

FIG. 8 is a flowchart illustrating another example of gen-
erating an encrypted partial slice. The method begins at step
132 where a processing module (e.g., of a dispersed storage
(DS) unit) receives a rebuild request from a requesting entity
(e.g., another DS unit). The method continues at step 134
where the processing module determines key pairing require-
ments. The key pairing requirements includes one or more of
a performance requirement, a security requirement, and a
processor loading requirement. The determination may be
based on one or more of the rebuild request, a predetermina-
tion, a message, a dispersed storage network (DSN) perfor-
mance indicator, a DSN security indicator, a vault identifier
(ID), and a requester ID. For example, the processing module
determines a lower than average processor loading require-
ment when the DSN performance indicator indicates that the
DSN system is loaded more than average. As another
example, the processing module determines a higher than
average security requirement when the DSN security indica-
tor indicates that higher security is required.

The method continues at step 136 where the processing
module determines candidate key pairing entities. The deter-
mination may be based on one or more of the key pairing
requirements, a rebuilding topology, a security requirement,
rebuilding participants, and a bandwidth utilization require-
ment. For example, the processing module may determine a
lower than average number of candidate key pairing entities
when the key pairing requirements includes a lower than
average processor loading requirement. As another example,
the processing module may determine a higher than average
number of candidate key pairing entities when the key pairing
requirements includes a higher than average security require-
ment.

The method continues at step 138 where the processing
module selects one or more key pairing entities of the candi-
date key pairing entities based on the key pairing require-
ments. The selection may be based on one or more of opti-
mizing a match of the key pairing requirements to an
estimated performance an estimated security associated with
a desired number of candidate key pairing entities. For
example, the processing module selects a lower than average
number of key pairing entities for better performance and
selects a higher than average number of key pairing entities
for better security. As another example, the processing mod-
ule selects a key pairing entity for utilization of an associated
key and even number of times amongst all dispersed storage
(DS) units. For instance, the processing module selects a node
ahead and a node behind a reference DS unit (e.g., associated
with the processing module), wherein the node ahead, the DS
unit, and the node behind are substantially sequenced in order
in accordance with a rebuilding topology. In another instance,
the processing module selects two nodes ahead and two nodes
behind.

The method continues at step 140 where the processing
module generates a shared secret key corresponding to each
of'the one or more key pairing entities. The method continues

10

15

20

25

30

35

40

45

50

55

60

65

18

at step 142 where the processing module generates a partial
slice. The method continues at step 144 where the processing
module encrypts the partial slice with each of the shared
secret keys to produce an encrypted partial slice (e.g., exclu-
sive OR of each key and the partial slice). The method con-
tinues at step 146 where the processing module outputs the
encrypted partial slice in accordance with a rebuilding topol-
ogy. For example, the processing module sends the encrypted
partial slice directly to the requesting entity when the rebuild-
ing topology indicates that the requesting entity is located
with the processing module. As another example, the process-
ing module sends the encrypted partial slice to the requesting
entity via another DS unit, wherein the other DS unit pro-
duces a corresponding encrypted partial slice, combines the
encrypted partial slice and the corresponding encrypted par-
tial slice to produce a combined encrypted partial slice (e.g.,
exclusive OR), and sends the combined encrypted partial
slice to the requesting entity.

FIG. 9A is a schematic block diagram of another embodi-
ment of a computing system that includes a management unit
18, a computing device 150, and a plurality of dispersed
storage (DS) units 36, which supports a plurality of digital
storage vaults. A set of the DS units 36 supports one or more
of'the plurality of digital storage vaults, where a DS unit (e.g.,
the computing device 150) of the set stores encoded data
slices (e.g., in memory 154) associated with the digital stor-
age vault.

The computing device 150 may be implemented as at least
one of a DS processing unit, a user device, and a DS unit 36.
For example, the computing device 150 is implemented as a
DS unit 36 of a set of DS units 36 of the plurality of DS units
36. The computing device 150 includes a DS module 152 and
a memory 154. The memory of 154 may be implemented
utilizing one or more memory devices including one or more
of a FLASH memory, random access memory, a magnetic
disk drive, and an optical disk drive. The memory 154 may be
utilized by the computing device 150 to store software asso-
ciated with the computing device 150. The software includes
one or more of operating system software, bootstrap firm-
ware, application software, and software configuration infor-
mation. The DS module 152 includes a receive update notice
module 156, a determine update strategy module 158, and an
update software module 160.

The receive update notice module 156, when operable
within the computing device 150, causes the computing
device 150 to receive a software update notice 162 (e.g., from
the management unit 18). The software update notice 162
includes at least one of a software update indicator and a
software update 166. The software update indicator includes
at least one of a software revision number and a software
update retrieval location.

The determine update strategy module 158, when operable
within the computing device 150, determines, in regards to
the software update notice 162, an update strategy 164 for
updating software of the DS unit (e.g., the computing device
150) such that at least a decode threshold number of DS units
36 of the set of DS units 36 is continually available to service
access requests to the digital storage vault. The update strat-
egy 164 includes at least one of never updating, updating now,
and updating later. The update strategy may be determined in
avariety of ways. For example, the determine update strategy
module 158 determines the status of the software update 166
that is used to update the software and determines the update
strategy 164 based on the status of the software update. The
status of the software update includes at least one of a time
indicator, a mandatory critical status, a mandatory noncritical
status, and an optional status. As a specific example, the

US 9,110,593 B2

19

determine update strategy module 158 determines the update
strategy 164 to include updating now when the software
update 166 includes the mandatory critical status. As another
specific example, the determine update strategy module 158
determines the update strategy 164 to include updating later
when the software update 166 includes the mandatory non-
critical status.

As another example, the determine update strategy module
158 determines the update status 168 of DS units 36 in the set
and determines the update strategy 164 based on their update
status 168. The update status 168 includes at least one of
available, unavailable, already updated, and not already
updated. As a specific example, the determine update strategy
module 158 determines the update strategy 164 to include
updating later when the update status 168 indicates that only
a decode threshold number of DS units 36 (e.g., including the
computing device 150) of the set of DS units 36 is available.

As yet another example, the determine update strategy
module 158 identifies a set of digital storage vaults supported
by the DS unit (e.g., the computing device 150). The strategy
module 158 then identifies other DS units that are also sup-
porting the set of digital storage vaults. The strategy module
then determines the update strategy 164 such that at least a
decode threshold number of DS units 36 for each vault is
continually available. For example, the determine update
strategy module 158 determines the update strategy 164 to
include updating later when the update status 168 of one setof
the set of sets of DS units indicates that only a decode thresh-
old number of DS units 36 of the set of DS units 36 is
available.

As a further example, the determine update strategy mod-
ule 158 determines priority status of at least some of the vaults
and determining the update strategy based on the priority
status of the vaults. The priority status includes at least one of
high priority, general priority, low priority, and no priority.
For example, the update strategy module 158 determines the
update strategy 164 to include updating DS units 36 associ-
ated a first vault immediately and updating DS units 36 asso-
ciated with a second vault later when the first vault is associ-
ated with a priority status of a greater priority than a priority
status of the second vault.

The update software module 160, when operable within the
computing device 150, updates the software of the DS unit
(e.g., the computing device 150) in accordance with the
update strategy 164. For example, the updating the software
may be done by facilitating storage of the software update 166
in the memory 154, facilitating replacing an older revision of
software with the software update 166, configuring DS unit
software in accordance with configuration information of the
software update 166, activating the software update 166,
deleting the older revision of software, and/or deleting the
older revision of software when the software update 166 is
operational.

FIG. 9B is a schematic block diagram of another embodi-
ment of a computing system that includes a computing device
180 and a plurality of dispersed storage (DS) units 36. The
computing device 180 may be implemented as at least one of
a DS processing unit, a user device, DS unit 36, and a DS
managing unit 18 of a distributed storage network (DSN). The
computing device 180 includes a DS module 182. The DS
module 182 includes a generate notice module 184, a deter-
mine update strategy module 186, and a facilitate software
update module 188.

The generate notice module 184, when operable within a
computing device 180, generates and sends a software update
notice 162 to the dispersed storage (DS) units 36. The DS
units 36 support digital storage vaults, where a set of the DS

10

15

20

25

30

35

40

45

50

55

60

65

20

units 36 supports one of the digital storage vaults. The soft-
ware update notice 162 includes a software update indicator
and/or a software update 166. The software update indicator
includes a software revision number and/or a software update
retrieval location.

The determine update strategy module 186, when operable
within the computing device 180, determines, in regards to
the software update notice 162, an update strategy 164 for
updating software of the DS units 36 such that at least a
decode threshold number of DS units 36 is continually avail-
able to service access requests to the digital storage vaults.
The update strategy may be determined in a variety of ways.
For example, the determine update strategy module 186
receives responses 190 (e.g., a software revision indicator, an
available indicator, and an unavailable indicator) from the DS
units regarding the software update notice 162. The strategy
module 186 then identifies a DS unit 36 in accordance with
the update strategy 164 and facilitates (e.g., send the software
update) updating the software of the identified DS unit. As a
specific example, the determine update strategy module sends
the software update 166 to the identified DS unit when the
response 190 of the identified DS unit indicates that it has an
older software version and that it is available for updating.
The strategy module may also determine the update strategy
in a similar manner to the strategy module of FIG. 9A.

The facilitate software update module 188, when operable
within the computing device 180, facilitates updating the
software of a DS unit 36 in accordance with the update strat-
egy 164. For example, the facilitate software update module
188 obtains (e.g., receive, request, generate, etc.) the software
update 166 and outputs it to one or more of DS units 36 in
accordance with the update strategy 164.

FIG. 9C is a flowchart illustrating an example of updating
software. The method begins at step 200 where a management
unit of a distributed storage network (DSN) sends a software
update notice to dispersed storage (DS) units that support
digital storage vaults. The software update notice includes a
software update and/or a software update indicator, which
includes a software revision number and/or a software update
retrieval location.

The method continues at step 202 where a processing mod-
ule (e.g., of a DS management unit, of a DS unit) determines,
in regards to the software update notice, an update strategy for
updating software of the DS units such that at least a decode
threshold number of DS units is continually available to ser-
vice access requests to the digital storage vaults. Examples of
determining the update strategy have been previously dis-
cussed. The method continues at step 204 where the process-
ing module updates the software of at least some of the DS
units in accordance with the update strategy.

FIG. 10A is a flowchart illustrating an example of encrypt-
ing an encoded data slice. The method begins at step 210
where a processing module (e.g., of a dispersed storage (DS)
processing unit) dispersed storage error encodes a data seg-
ment to produce a set of encoded data slices for storage in a
dispersed storage network (DSN) memory. The method con-
tinues at step 212 where the processing module obtains a
secret key (e.g., retrieving it, generating it from a random key,
generating it based on a deterministic function (e.g., a hash
function)).

The method continues at step 214 where the processing
module encrypts an encoded data slice of the set of encoded
data slices utilizing the secret key. The method continues at
step 216 where the processing module encrypts the secret key
utilizing a public key. The processing module then obtains the
public key from a public/private key pair associated with a
target entity (e.g., a receiving DS unit).

US 9,110,593 B2

21

The method continues at step 218 where the processing
module creates a package that includes the encrypted data
slice, the encrypted secret key, a timestamp, a sequence num-
ber, and/or an opcode (e.g., write, checked write, delete). The
method continues at step 220 where the processing module
creates a signed package (e.g., signs the package using a
secure digital signature). For example, the processing module
encrypts a hash digest of the package utilizing a private key
associated with the processing module (e.g., the sender) to
produce the signature.

The method continues at step 222 where the processing
module sends the signed package to a DS unit to facilitate
storage of the encrypted data slice and the encrypted secret
key. The method continues at step 224 where the processing
module sends a certificate chain to the DS unit. For example,
the processing module sends the certificate chain once per
batch of sending a plurality of signed packages to the DS unit.
As another example, the processing module sends the certifi-
cate chain to the DS unit with each signed package.

FIG. 10B is a flowchart illustrating an example of decrypt-
ing an encrypted data slice. The method begins at step 226
where a processing module (e.g., of a dispersed storage (DS)
unit) receives a signed package and may further receive a
certificate chain. The method continues at step 228 where the
processing module validates a signature of the signed pack-
age. For example, the processing module decrypts the signa-
ture utilizing a public-key associated with a sender of the
signed package and then compares the decrypted signature to
a calculated hash digest of the package. If the comparison is
favorable (e.g., the decrypted signature is substantially the
same as the calculated hash digest), the signature is validated.
Alternatively, or in addition to, the processing module vali-
dates the certificate chain when a certificate chain is received.

The method continues at step 230 where the processing
module validates permissions associated with the signed
package. For example, the processing module compares a
requester identity (ID) and an opcode to a list of allowed
operations associated with the requester ID. When the signa-
ture and permissions are valid, the method continues at step
232 where the processing module decrypts an encrypted
secret key utilizing a private key to recapture the secret key.
Note that the private key may be associated with a public/
private key pair of the processing module (e.g., for a current
DS unit).

The method continues at step 234 where the processing
module decrypts an encrypted data slice utilizing the secret
key to recapture the encoded data slice. The method continues
at step 236 where the processing module validates the pack-
age. For example, the processing module verifies that a
sequence number of the package compares favorably (e.g.,
greater than) to a previous sequence number. As another
example, processing module verifies that a timestamp of the
package compares favorably (e.g., less than) to at least one of
a previous timestamp and a current timestamp. The method
continues at step 238 where the processing module performs
an operation (e.g., write, checked write, delete) in accordance
with an opcode of the package when the package is validated.

FIG. 11A is a flowchart illustrating an example of storing a
data segment, which includes similar steps to FIG. 10A. The
method begins at step 240 where a processing module (e.g., a
dispersed storage (DS) processing unit) generates integrity
information for a data segment to be stored in a dispersed
storage network (DSN) memory. For example, the integrity
information may be a hash digest (e.g., a hash function on the
data segment), a checksum of the data segment, and/or a
signature of the data segment (e.g., encrypting a hash of the

10

20

40

45

22

data segment utilizing a private key of a public/private key
pair associated with the processing module).

The method continues at step 242 where the processing
module combines (e.g., appending, interlacing, and/or encod-
ing the integrity information and data segment) integrity
information and the data segment to produce a data package.
The method continues at step 212 of FIG. 10A where the
processing module obtains a secret key and thereafter contin-
ues at step 246 where the processing module encrypts the data
package utilizing the secret key to produce an encrypted data
package.

The method continues at step 248 where the processing
module dispersed storage error encodes the encrypted data
package utilizing a systematic erasure code of dispersed stor-
age error coding parameters to produce a set of encoded
encryptedslices. The systematic erasure code includes matrix
multiplying a data matrix of the encrypted data package with
an encoding matrix that includes a unity matrix portion to
produce a matrix of encoded codes. The encoded codes are
combined to produce the set of encoded encrypted slices. The
encoded codes that result from the matrix multiplication of
the elements of the data matrix with the unity matrix portion
of the encoding matrix are substantially similar to the corre-
sponding elements of the data matrix.

The method continues at step 250 where the processing
module encodes the secret key utilizing a secret sharing algo-
rithm (e.g., Shamir secret sharing method and/or dispersed
storage error encoding) to produce a set of secret shares. Note
that if the encoding includes the dispersed storage error
encoding, the encoding may utilize a different pillar width
and/or a different decode threshold number than the dispersed
storage error encoding of the encrypted data package.

The method continues at step 252 where the processing
module sends the set of encoded encrypted slices to the DSN
memory for storage therein. The method continues at step 254
where the processing module sends the set of secret shares to
the DSN memory for storage therein. For example, process-
ing module sends the set of secret shares to a different portion
(e.g., different DS unit) of the DSN memory as compared to
where it sent the set of encoded encrypted slices.

FIG. 11B is a flowchart illustrating an example of retriev-
ing a data segment. The method begins at step 256 where a
processing module (e.g., of a dispersed storage (DS) process-
ing unit) retrieves a decode threshold number of encoded
encrypted slices of a set of encoded encrypted slices from a
dispersed storage network (DSN) memory. The method con-
tinues at step 258 where the processing module retrieves a
decode threshold number of secret shares of a set of secret
shares from the DSN memory.

The method continues at step 260 where the processing
module decodes the decode threshold number of secret shares
utilizing a secret sharing algorithm to reproduce a secret key.
The method continues at step 262 where the processing mod-
ule dispersed storage error decodes the decode threshold
number of encoded encrypted slices to reproduce an
encrypted data package. The method continues at step 264
where the processing module decrypts the encrypted data
package utilizing the secret key to reproduce a data segment
and recovered integrity information. For example, the pro-
cessing module separates the decrypted data package into the
data segment and the recovered integrity information.

The method continues at step 266 where the processing
module validates the recovered integrity information. For
example, the processing module generates integrity informa-
tion for the data segment and compares it to the recovered
integrity information. If the comparison is favorable (e.g.,
substantially the same), then the integrity information is vali-

US 9,110,593 B2

23

dated. In addition, the processing module may output the data
segment to a requesting entity when the recovered integrity
information is favorably validated.

FIG. 12A is a schematic block diagram of another embodi-
ment of a computing system that includes a computing device
270 and a distributed storage network (DSN) memory 22. The
distributed storage network memory 22 includes a plurality of
dispersed storage (DS) units 36. The computing device 270
includes a DS module 272 and may be implemented as a DS
processing unit, a user device, another DS unit 36, a storage
integrity processing unit, and/or a DS managing unit 18 of a
DSN. The computing device The DS module 272 includes an
encrypt module 274, a partition module 276, a combine mod-
ule 278, and an encode module 280.

The encrypt module 274, when operable within the com-
puting device 270, encrypts a data segment 282 utilizing an
encryption key to produce an encrypted data segment 284. In
addition, the encrypt module 274 performs a deterministic
function (e.g., a hashing function; a hash based message
authentication code function; and/or a mask generating func-
tion) on the encrypted data segment 284 to produce a trans-
formed representation of the encrypted data segment. The
encrypt module 274 also masks the encryption key utilizing
the transformed representation of the encrypted data segment
to produce a masked key 286. For example, the encrypt mod-
ule masks the encryption key by exclusive ORing the trans-
formed representation and the encryption key, subtracting
one from the other, adding them together, adding and/or sub-
tracting a constant to each and then XOR, add, or subtract.

The encrypt module 274 may perform the deterministic
function as a combination of deterministic functions. For
example, the encrypt module 274 performs the hashing func-
tion on the encrypted data segment 284 to produce an interim
value and performs the mask generating function on the
interim value to produce the transformed representation of the
encrypted data segment. As another example, the encrypt
module 274 performs the hash based message authentication
code function on the encrypted data segment 284 to produce
the interim value and performs the MGF on the interim value
to produce the transformed representation of the encrypted
data segment.

The partition module 276, when operable within the com-
puting device 270, partitions the masked key 286 into masked
key partitions 288 and partitions the encrypted data segment
284 into encrypted data segment partitions 290. The portion-
ing may be done in accordance with a partitioning scheme. In
this instance, the partition module 276 determines the parti-
tioning scheme based on a desired level of security, security
requirements, available memory for storage, an error mes-
sage, size of the data segment, size of the masked key, and/or
size of the encrypted data segment. Note that the determined
partitioning scheme may be to partition the masked key and/
or the encrypted data segment into equal sized partitions, into
variable sized partitions, and/or into adaptive sized partition.

The combine module 278, when operable within the com-
puting device 270, combines the masked key partitions 288
with the encrypted data segment partitions 290 to produce
combined partitions 292. The combining may be done in a
variety of ways. For example, the combine module 278 estab-
lishing a pseudo random combining process to combine the
masked key partitions 288 and the encrypted data segment
partitions 290. As another example, the combine module 278
utilizes an interleaving process to combine the masked key
partitions 288 with the f encrypted data segment partitions
290.

The encode module 280, when operable within the com-
puting device 270 encodes a combined partition using a dis-

10

15

20

25

30

35

40

45

50

55

60

65

24

persed storage error coding function to produce a set of
encoded data slices 294. Alternatively, the encode module
280 may encode the combined partition by encrypting it using
a second encryption key. The encode module 280 then per-
forms a deterministic function on the encrypted combined
partition to produce a representation of it. The encoding mod-
ule then masks the second encryption key utilizing the trans-
formed representation and appends the second masked key to
the encrypted combined partition to produce a further com-
bined partition. The encode module then encodes the further
combined partition using the same or a different dispersed
storage error coding function to produce the set of encoded
data slices 294.

The encode module 280 outputs the set of encoded data
slices 294 for storage in at least one DS unit 36 of a DSN
memory 22. For example, the encode module generates a set
of'slice names corresponding to the set of encoded data slices
294 and generates a set of write requests for the encoded data
slices 294. The encode module then selects a set of storage
resources (e.g., a set of DS units, DSN memory 22, a second
DSN memory, and/or an adjunct memory) and outputs the
write requests to the storage resources. The encode module
may select the storage resources based on a storage scheme, a
DSN memory availability indicator, a storage location indi-
cator, a user input, and/or an available adjunct memory indi-
cator.

FIG. 12B is a flowchart illustrating an example of securing
a data segment. The method begins at step 300 where a
processing module (e.g., of a dispersed storage (DS) process-
ing unit of a dispersed storage network (DSN)) encrypts the
data segment utilizing an encryption key. The method contin-
ues at step 302 where the processing module performs a
deterministic function on the encrypted data segment to pro-
duce a transformed representation of the encrypted data seg-
ment. The method continues at step 304 where the processing
module masks the encryption key utilizing the transformed
representation of the encrypted data segment to produce a
masked key.

The method continues at step 306 where the processing
module partitions the masked key into masked key partitions.
The method continues at step 308 where the processing mod-
ule partitions the encrypted data segment into encrypted data
segment partitions. The method continues at step 310 were
the processing module combines the plurality of masked key
partitions with the plurality of encrypted data segment parti-
tions to produce a plurality of combined partitions.

The method continues at step 312 where the processing
module encodes a combined partition using a dispersed stor-
age error coding function to produce a set of encoded data
slices. The method continues at step 314 where the processing
module outputs the set of encoded data slices for storage in a
DS unit of the DSN. The method continues at step 316 where
the processing module encodes remaining combined parti-
tions using the dispersed storage error coding function to
produce sets of encoded data slices.

The method continues at step 318 where the processing
module outputs the sets of encoded data slices for storage in
DS units of the DSN. For example, the processing module
outputs the encoded data slices such that a first DS unit stores
a first set of the sets of encoded data slices. As another
example, the processing module outputs the encoded data
slices such thata DS unit stores a first encoded data slice of the
sets of encoded data slices.

FIG. 13A is a schematic block diagram of another embodi-
ment of dispersed storage (DS) processing module that trans-
forms at least two encoded portions of slices (e.g., encoded
portion 1 slices, encoded portion 2 slices) into a data segment

US 9,110,593 B2

25

340. The DS processing module includes a grid module 82, a
combiner 320, a splitter 322, a hashing function 324, a de-
masking function 326, and a decryptor 328. The grid module
82 receives the at least two encoded portions of slices (e.g.,
retrieved from a dispersed storage network (DSN) memory)
and dispersed storage error decodes them to produce at least
two portions of a secure package 330. For example, the grid
module 82 dispersed storage error decodes encoded portion 1
slices to produce a portion 1 of the secure package and dis-
persed storage error decodes encoded portion 2 slices to pro-
duce a portion 2 of the secure package. The combiner 320
combines the portions to produce the secure package 330.

The splitter 322 functions to split (e.g., de-appending, de-
interleaving, and decoding) a masked key 334 and an
encrypted data segment 332 from the secure package 330. For
example, the splitter de-appends the masked key 334 and the
encrypted data segment 332 from the secure package 330 in
accordance with an appending parameter.

The hashing function 324 generates a transformed data
segment 336 from the encrypted data segment 332 utilizing a
deterministic function. The de-masking function 326 gener-
ates a key 338 from the masked key 334 and the transformed
data segment 336. For example, the de-masking function 326
exclusive ORs (XOR) the masked key 334 and the trans-
formed data segment 336 to generate the key. As another
example, the de-masking function 326 XORs the transformed
data segment 336 and the masked key 334 to produce a
modified key. The de-masking function 326 then modifies
(e.g., add or subtract an offset, encrypting, XOR with a secret
key, appending a secret key) the modified key to produce the
key 338. The decryptor 328 decrypts the encrypted data seg-
ment 332 utilizing the key 338 to produce the data segment
340.

In an example of operation, the grid module 82 retrieves at
least a decode threshold number of slices of a set of encoded
portion 1 slices and at least a decode threshold number of
slices a set of encoded portion 2 slices. Grid module 82
dispersed storage error decodes them to produce first and
second portions. The combiner 320 combines the portions to
produce the secure package 330 by appending the portion 2 to
the portion 1.

The splitter 322 extracts the masked key 334 and the
encrypted data segment 332 from the secure package 330 by
de-appending the masked key 334 from the secure package
330. The hashing function 324 calculates a message digest
(MD)-5 hash of the encrypted data segment 332 to generate
transformed data segment 336. The de-masking function 326
calculates a XOR of the masked key 334 and the transformed
data segment 336 to generate the key 338. The decryptor 328
decrypts the encrypted data segment 332 utilizing the key 338
to produce the data segment 340. The data segment 340 may
subsequently be aggregated with other data segments to pro-
duce a data object as part of a retrieval sequence.

FIG. 13B is a flowchart illustrating another example of
retrieving a data segment. The method begins with step 342
where a processing module (e.g., of a dispersed storage (DS)
processing unit) facilitates retrieving two or more sets of
encoded portion slices. The method continues at step 344
where the processing module dispersed storage error decodes
the two or more sets of encoded portion slices to produce two
or more portions.

The method continues at step 346 where the processing
module combines the portions to produce a secure package in
accordance with a combining algorithm and/or combining
parameters. The method continues at step 348 where the
processing module splits the secure package to extract a
masked key and an encrypted data segment. The method

10

15

20

25

30

35

40

45

50

55

60

65

26

continues at step 350 where the processing module trans-
forms the encrypted data segment utilizing a deterministic
function (e.g., a hashing function) to produce a transformed
data segment. The method continues at step 352 where the
processing de-masks the masked key utilizing a de-masking
function to produce a key. The method continues at step 354
where the processing module decrypts the encrypted data
segment utilizing the key to produce a data segment.

FIG. 14 is a diagram illustrating an example of a segmen-
tation allocation table (SAT) 360 that includes a plurality of
regions 1-R. Each region of the plurality of regions 1-R
includes a start segment vault source name field 362, a seg-
ment size field 364, a segmentation approach field 366, a total
length field 368, and a region hash field 370. The start seg-
ment vault source name field 362 includes a vault source
name corresponding to a first data segment of a contiguous
number of data segments that store data corresponding to a
region. Alternatively, or in addition to, the start segment vault
source name field may include a file identifier (ID), a segment
1D, ablock ID and a file type indicator (e.g., block storage or
file storage). The segment size field 364 includes a segment
size entry indicating a number of bytes of each segment
associated with the region.

The segmentation approach field 366 includes a segmen-
tation approach indicator, which indicates what type of seg-
mentation is utilized when segmenting data to produce the
contiguous number of data segments associated with the
region. For example, segment sizes of the contiguous number
of'data segments are substantially the same when the segmen-
tation approach indicator indicates a flat or fixed approach. As
another example, segment sizes of the contiguous number of
data segments start small and ramp up when the segmentation
approach indicator indicates a ramp up approach. As yet
another example, segment sizes of the contiguous number of
data segments start higher and ramp down when the segmen-
tation approach indicator indicates a ramp down approach. In
such ramping approaches, the segmentation approach field
366 may also include a starting segment size, a size increment
number (e.g., the difference in size between segments), and a
ramp up/down indicator.

The total length field 368 includes a length indicator (e.g.,
anumber of bytes) corresponding to the amount of data stored
in the contiguous number of data segments that store data
corresponding to the region. Alternatively, or in addition to,
the total length field may include a data total length indicator
corresponding to the amount of data stored in all regions
associated with the data.

The region hash field 370 includes a deterministic function
result of applying a deterministic function to the contiguous
number of data segments associated with the region. The
deterministic function includes one or more of a hash algo-
rithm (e.g., message digest (MD)-5, secure hash algorithm
(SHA)-1, SHA-256, SHA 512), a hash-based message
authentication code (HMAC, e.g., HMAC-MD-5), and a
mask generating function (MGF). For example, a hash digest
entry from performing a MD-5 hashing function over one
data segment results when the region includes one data seg-
ment. The region hash field may be utilized to determine
whether a similar data segment has already been stored in an
associated dispersed storage network (DSN) memory.

The SAT 360 may be stored in a local memory associated
to enable access to a dispersed storage network (DSN)
memory and/or as a SAT data segment in the DSN memory
(e.g., as a set of encoded SAT slices). A SAT vault source
name is associated with the SAT when the SAT is stored in the
DSN memory. Atleast one SAT associates data to one or more
regions of contiguous data segments, wherein each data seg-

US 9,110,593 B2

27

ment of the one or more contiguous data segments is stored as
a set of encoded data slices in a dispersed storage network
(DSN) memory. For example, initial storage of a file stuff.txt
results in a first region stored in the DSN memory that
includes four contiguous data segments of the initial data of
stuff.txt and one data segment corresponding to the SAT.
Next, an updated revision of the file stuff.txt is stored in the
DSN resulting in a second region stored in the DSN memory
that includes four more contiguous data segments of
appended data of stuff.txt and an updated SAT data segment.
The SAT vault source name enables access to all of the
encoded data slices associated with the data.

FIG. 15A is a diagram illustrating an example of a slice
name 372 format that includes a slice index field 374 and a
vault source name field 376. The slice index field 374 includes
a slice index entry corresponding to a slice name that may be
utilized to produce a pillar number corresponding to a dis-
persed storage (DS) unit to store an associated encoded data
slice. The vault source name field 376 includes a vault source
and entry that includes a source name field 378 and a segment
number field 380. The source name field 378 includes a
source name entry corresponding to the slice name. The seg-
ment number field 380 includes a segment number entry that
corresponds to a segment identifier (ID) for each segment
associated with storing data and/or a segment allocation table
(SAT). For example, segment number zero is associated with
a SAT and segment number one or higher is associated with a
first segment or subsequent segments of a contiguous number
of segment numbers associated with regions of data. For
instance, arevision 1 SAT (e.g., of a first revision of a data file)
is assigned a source name of AAA and a segment number of
0 to produce a vault source name of AAAO and an affiliated
revision 1 data start (e.g., a first segment of data) is associated
with the same source name of AAA and a segment number of
1 to produce a vault source name of AAAl. As another
instance, a revision 2 SAT (e.g., of a second revision of the
data file) is assigned a source name of BBB and a segment
number of 0 to produce a vault source name of BBB0 and an
affiliated revision 2 new data start (e.g., anew second segment
as compared to revision 1) of the data is associated with the
source name of BBB and a segment number of 2 to produce a
vault source name of BBB2.

The source name field 378 includes a vault ID field 382, a
generation field 384, and an object number field 386. The
vault ID field 382 includes a vault ID entry that associates a
plurality of data as a group of data accessible when access to
such a vault is enabled (e.g., a group of data affiliated with an
entity such as a user device or a group of user devices). The
generation field 384 includes a generation entry that associ-
ates a subgroup of data associated with the vault ID entry of
the slice name. For example, successive generations may be
added over time to organize data into multiple subgroups. The
object number field 386 (e.g., a file ID) includes an object
number entry of the slice name that identifies the data and
may be created based on one or more of a filename, a hash of
the data, a hash of the filename, a user ID, a vault ID, and a
random number. For example, an object number of a first
revision of a data file may be substantially the same as the
object number of a second revision of the data file. As another
example, the object number of the first revision of the data file
may be substantially different than the object number of the
second revision of the data file.

FIG. 15B is a diagram illustrating an example of data
segmentation that includes a segment allocation table (SAT)
388 and a plurality of consecutive segments 1-4 correspond-
ing to initially storing a first revision of data. The SAT 388 is
stored in a dispersed storage network (DSN) memory at a

5

10

15

20

25

30

35

40

45

50

55

60

65

28

vault source name address of AAAO. The SAT 388 includes a
first region with a start segment vault source name field 362
entry of AAA1, a segment size field 364 entry of 100 bytes, a
segmentation approach field 366 entry of a fixed segmenta-
tion approach, a total length field 368 entry of 100 bytes, and
a region hash field 370 entry value of FD5396. The SAT 388
further includes a second region with a start segment vault
source name of AAA2, a segment size of 100 bytes, a fixed
segmentation approach, a total length of 240 bytes, and a
region hash value of 39C2DA. Each segment of the segments
1-4 of the example contain a maximum of 100 bytes in accor-
dance with the segment size of 100 bytes as indicated in both
regions of the SAT. A segment 1 is stored in the DSN memory
at a vault source name address of AAA1 in accordance with
the start segment vault source name AAA1 as indicated in
region 1 of the SAT. Segments 2-4 are stored in the DSN
memory at vault source name addresses of AAA2-AAA4 in
accordance with contiguous segment numbering as indicated
in region 2 of the SAT.

FIG. 15C is a diagram illustrating another example of data
segmentation that includes a segment allocation table (SAT)
390 and a plurality of consecutive segments 2-5 correspond-
ing to new segments of a second revision of data. The SAT
390 is stored in a dispersed storage network (DSN) memory
at a vault source name address of BBB0. The SAT 390
includes two regions, wherein a first region includes segments
common to a first revision of the data and the second revision
of the data. The first region includes a start segment vault
source name of AAA1, a segment size of 100 bytes, a fixed
segmentation approach, a total length of 100 bytes, and a
region hash of FD5396.

The second region includes a start segment vault source
name of BBB2, a segment size of 300 bytes, a fixed segmen-
tation approach, a total length of 1200 bytes, and a region
hash of 9274BC. The segments 2-5 each contain a maximum
01’300 bytes in accordance with the segment size of 300 bytes
as indicated in the SAT region 2. The segments 5-8 each
contain 300 bytes in accordance with the total length of 1200
bytes as indicated in the SAT region 2. Segment 2 (e.g., a new
segment 2 as compared to a segment 2 of revision 1 of the
data) is stored in a dispersed storage network (DSN) memory
at a vault source name address of BBB2 in accordance with
the start segment vault source name BBB2 as indicated in the
SAT region 2. Segments 2-5 are stored in the DSN memory at
vault source name addresses of BBB2-BBBS in accordance
with contiguous segment numbering and SAT region 2.
Another SAT associated with revision 1 of the data (e.g., as
discussed with reference to FIG. 15B) and old segments 2-4
may be deleted when the SAT associated with revision 2 of
the data is stored when revision one of the data is no longer
required.

FIG. 16A is a schematic block diagram of another embodi-
ment of a computing system that includes a computing device
400 and a dispersed storage network (DSN) memory 22 of a
DSN. The distributed storage network memory 22 includes a
plurality of dispersed storage (DS) units 36. The computing
device 400 includes a DS module 402 and may be imple-
mented as a DS processing unit, a user device, a storage
integrity processing unit, and/or a DS managing unit 18 of a
DSN. The DS module 402 includes a generate preliminary
storage information module 404, an access storage informa-
tion module 406, a compare information module 408, a gen-
erate storage information module 410, and a store new data
module 412.

The generate preliminary storage information module 404,
when operable within the computing device 400 generates
preliminary DSN storage information 416 for data 414 to be

US 9,110,593 B2

29

stored in a DSN (e.g., in the DSN memory 22). The prelimi-
nary DSN storage information 416 includes, for one or more
portions (e.g., regions) of the data 414, one or more of deter-
ministic function representations of the data 414, a total
length indicator, a segmentation approach, a segment size,
and one or more region indicators. For example, the generate
preliminary storage information module 404 may generate
the preliminary DSN storage information by accessing a
lookup using a data identifier (ID) associated with the data
414. As a specific example, the generate preliminary storage
information module 404 receives the data 1D, associates the
data ID with a vault ID, accesses a registry based on the vault
1D, and retrieves the segmentation approach and the segment
size. As another example, the generate preliminary storage
information module 404 may generate the preliminary DSN
storage information by receiving the data 414 and analyzing
it and/or performing a deterministic function on the data 414.

The generate preliminary storage information module 404
also segments the data 414 into segments in accordance with
the preliminary DSN storage information. For example, the
generate preliminary storage information module 404 seg-
ments the data 414 into a first subset of segments correspond-
ing to a first region and into a second subset of segments
corresponding to a second region. The generate preliminary
storage information module 404 then performs a determinis-
tic function on segments of the first and second regions to
produce a deterministic representation of the first and second
regions.

The access storage information module 406, when oper-
able within the computing device 400, accesses DSN storage
information 418 regarding other data stored in the DSN. For
example, the access storage information module 406 accesses
one or more segment allocation tables for the other data. Note
that the DSN storage information 418 includes, for one or
more portions (e.g., regions) of the other data, one or more of
deterministic function representations of the other data, a
total length indicator of the other data, a segmentation
approach of the other data, a segment size of the other data,
and one or more region indicators of the other data.

As another example, the access storage information mod-
ule 406 identifies a relationship between the data 414 and the
other data and accessing the DSN storage information 418 of
the other data based on the relationship. Note that the rela-
tionship includes a same data ID, a same requesting entity 1D,
asame user ID, a same vault ID, and/or a same group of users.

The compare information module 408, when operable
within the computing device 400, compares the preliminary
DSN storage information 416 for the data 414 with the DSN
storage information 418 regarding the other data. For
example, the compare information module 408 generates
deterministic function representations of the data 414 and
compares it with the deterministic function representations of
the other data. When the comparison is favorable (e.g., sub-
stantially similar), the compare information module 414 indi-
cates that the preliminary DSN storage information 416 is
comparable to the DSN storage information 418 of the other
data.

The generate storage information module 410, when oper-
able within the computing device 400, generates DSN storage
information for remaining portions of the data 420 when the
comparison result was favorable. The module 410 also gen-
erates DSN storage information 422 for the data 414 based on
the DSN storage information of the other data and the remain-
ing portions DSN storage information. For example, the gen-
erate storage information module 410 generates the DSN
storage information 420 for the data by associating at least the
portion of the data with the DSN storage information of at

20

30

35

40

45

55

30

least the portion of the other data. As a specific example, the
generate storage information module 410 utilizes a segment
allocation table of the DSN storage information of at least the
portion of the other data as a segment allocation table for at
least a portion of the data.

As another example, the generate storage information
module 410 generates the DSN storage information 420 for
the data by creating a segment allocation table that includes
data portioning information for the portions of the data and
deterministic function representations of the portions of the
data, wherein the portions of the data include the at least the
portion of the data and the remaining portions of the data 420.
As a specific example, the generate storage information mod-
ule 410 generates a new region entry of DSN storage infor-
mation for the remaining portions of the data 420, wherein the
new region entry is included in the segment allocation table.

The store new data module 412, when operable within the
computing device 400, dispersed storage error encodes the
remaining portions of the data 420 to produce dispersed stor-
age error encoded data 424. The store new data module 412
also outputs the DS encoded data 424 for storage in the DSN
memory 22 in accordance with the remaining portions DSN
storage information. For example, the store new data module
412 segments the remaining portions of the data 420 in accor-
dance with the remaining portions DSN storage information
(e.g., segment size, segmentation approach) to produce a
plurality of segments, encodes each segment of the rally of
segments utilizing a dispersed storage error coding function
to produce a plurality of sets of encoded data slices, and for
each plurality of sets of encoded data slices, outputting the
plurality of sets of encoded data slices to the DSN memory 22
for storage therein.

FIG. 16B is a flowchart illustrating an example of storing
segmented data. The method begins at step 430 where a
processing module (e.g., of a dispersed storage (DS) process-
ing unit of a dispersed storage network (DSN)) generates
preliminary dispersed storage network (DSN) storage infor-
mation for data to be stored in a DSN. The method continues
at step 432 where the processing module accesses DSN stor-
age information regarding other data stored in the DSN. The
accessing DSN storage information of the other data includes
accessing one or more segment allocation tables for the other
data, wherein a segment allocation table of the one or more
segment allocation tables includes data portioning informa-
tion for portions of the other data and deterministic function
representations of the portions of the other data. The access-
ing DSN storage information of the other data further
includes identifying a relationship between the data and the
other data and accessing the DSN storage information of the
other data based on the relationship.

The method continues at step 434 where the processing
module compares the preliminary DSN storage information
for the data with the DSN storage information regarding the
other data. The comparing further includes generating deter-
ministic function representations of the data and comparing
the deterministic function representations of the data with the
deterministic function representations of the portions of the
other data. The comparing further includes segmenting the
data into a plurality of segments in accordance with at least
one of the pulmonary DSN storage information and the DSN
storage information regarding the other data. For example,
the processing module compares a hash digest of a first region
of the data (e.g., a message digest 5 hash over 25 data seg-
ments of the region) to a first region hash digest associated
with the other data (e.g., from a segment allocation table
retrieved from the DSN).

US 9,110,593 B2

31

When at least a portion of the data has compatible prelimi-
nary DSN storage information with DSN storage information
of at least a portion of the other data, the method continues at
step 436 where the processing module generates DSN storage
information for remaining portions of the data to produce
remaining portions DSN storage information, wherein the at
least the portion of the data includes one or more of the
plurality of segments. The method continues at step 438
where the processing module generates DSN storage infor-
mation for the data based on the DSN storage information of
the at least the portion of the other data and the remaining
portions DSN storage information.

The generating the DSN storage information for the data
further includes associating the at least the portion of the data
with the DSN storage information of the at least the portion of
the other data. The generating the DSN storage information
for the data further includes creating a segment allocation
table that includes data portioning information for the por-
tions of the data and deterministic function representations of
the portions of the data, wherein the portions of the data
include the at least the portion of the data and the remaining
portions of the data. For example, the processing module
creates a new region entry including a start segment vault
source name, a segment size, a segmentation approach, a total
length of the remaining portions of data, and a region hash
digest over one or data segments of the region as the deter-
ministic function representation. The method continues at
step 440 where the processing module dispersed storage error
encodes the remaining portions of the data to produce dis-
persed storage error encoded data. The method continues at
step 442 where the processing module stores the dispersed
storage error encoded data in accordance with the remaining
portions DSN storage information.

As may be used herein, the terms “substantially” and
“approximately” provides an industry-accepted tolerance for
its corresponding term and/or relativity between items. Such
an industry-accepted tolerance ranges from less than one
percent to fifty percent and corresponds to, but is not limited
to, component values, integrated circuit process variations,
temperature variations, rise and fall times, and/or thermal
noise. Such relativity between items ranges from a difference
of a few percent to magnitude differences. As may also be
used herein, the term(s) “operably coupled to”, “coupled to”,
and/or “coupling” includes direct coupling between items
and/or indirect coupling between items via an intervening
item (e.g., anitem includes, but is not limited to, a component,
an element, a circuit, and/or a module) where, for indirect
coupling, the intervening item does not modify the informa-
tion of a signal but may adjust its current level, voltage level,
and/or power level. As may further be used herein, inferred
coupling (i.e., where one element is coupled to another ele-
ment by inference) includes direct and indirect coupling
between two items in the same manner as “coupled to”. As
may even further be used herein, the term “operable to” or
“operably coupled to” indicates that an item includes one or
more of power connections, input(s), output(s), etc., to per-
form, when activated, one or more its corresponding func-
tions and may further include inferred coupling to one or
more other items. As may still further be used herein, the term
“associated with”, includes direct and/or indirect coupling of
separate items and/or one item being embedded within
another item. As may be used herein, the term “compares
favorably”, indicates that a comparison between two or more
items, signals, etc., provides a desired relationship. For
example, when the desired relationship is that signal 1 has a
greater magnitude than signal 2, a favorable comparison may

25

35

40

45

50

32

be achieved when the magnitude of signal 1 is greater than
that of signal 2 or when the magnitude of signal 2 is less than
that of signal 1.

As may also be used herein, the terms “processing mod-
ule”, “processing circuit”, and/or “processing unit” may be a
single processing device or a plurality of processing devices.
Such a processing device may be a microprocessor, micro-
controller, digital signal processor, microcomputer, central
processing unit, field programmable gate array, program-
mable logic device, state machine, logic circuitry, analog
circuitry, digital circuitry, and/or any device that manipulates
signals (analog and/or digital) based on hard coding of the
circuitry and/or operational instructions. The processing
module, module, processing circuit, and/or processing unit
may be, or further include, memory and/or an integrated
memory element, which may be a single memory device, a
plurality of memory devices, and/or embedded circuitry of
another processing module, module, processing circuit, and/
or processing unit. Such a memory device may be a read-only
memory, random access memory, volatile memory, non-vola-
tile memory, static memory, dynamic memory, flash memory,
cache memory, and/or any device that stores digital informa-
tion. Note that if the processing module, module, processing
circuit, and/or processing unit includes more than one pro-
cessing device, the processing devices may be centrally
located (e.g., directly coupled together via a wired and/or
wireless bus structure) or may be distributedly located (e.g.,
cloud computing via indirect coupling via a local area net-
work and/or a wide area network). Further note that if the
processing module, module, processing circuit, and/or pro-
cessing unit implements one or more of its functions via a
state machine, analog circuitry, digital circuitry, and/or logic
circuitry, the memory and/or memory element storing the
corresponding operational instructions may be embedded
within, or external to, the circuitry comprising the state
machine, analog circuitry, digital circuitry, and/or logic cir-
cuitry. Still further note that, the memory element may store,
and the processing module, module, processing circuit, and/
or processing unit executes, hard coded and/or operational
instructions corresponding to at least some of the steps and/or
functions illustrated in one or more of the Figures. Such a
memory device or memory element can be included in an
article of manufacture.

The present invention has been described above with the
aid of method steps illustrating the performance of specified
functions and relationships thereof. The boundaries and
sequence of these functional building blocks and method
steps have been arbitrarily defined herein for convenience of
description. Alternate boundaries and sequences can be
defined so long as the specified functions and relationships
are appropriately performed. Any such alternate boundaries
or sequences are thus within the scope and spirit of the
claimed invention. Further, the boundaries of these functional
building blocks have been arbitrarily defined for convenience
of description. Alternate boundaries could be defined as long
as the certain significant functions are appropriately per-
formed. Similarly, flow diagram blocks may also have been
arbitrarily defined herein to illustrate certain significant func-
tionality. To the extent used, the flow diagram block bound-
aries and sequence could have been defined otherwise and
still perform the certain significant functionality. Such alter-
nate definitions of both functional building blocks and flow
diagram blocks and sequences are thus within the scope and
spirit of the claimed invention. One of average skill in the art
will also recognize that the functional building blocks, and
other illustrative blocks, modules and components herein,
can be implemented as illustrated or by discrete components,

US 9,110,593 B2

33

application specific integrated circuits, processors executing
appropriate software and the like or any combination thereof.

The present invention may have also been described, at
least in part, in terms of one or more embodiments. An
embodiment of the present invention is used herein to illus-
trate the present invention, an aspect thercof, a feature
thereof, a concept thereof, and/or an example therecof. A
physical embodiment of an apparatus, an article of manufac-
ture, a machine, and/or of a process that embodies the present
invention may include one or more of the aspects, features,
concepts, examples, etc. described with reference to one or
more of the embodiments discussed herein. Further, from
figure to figure, the embodiments may incorporate the same
or similarly named functions, steps, modules, etc. that may
use the same or different reference numbers and, as such, the
functions, steps, modules, etc. may be the same or similar
functions, steps, modules, etc. or different ones.

Unless specifically stated to the contra, signals to, from,
and/or between elements in a figure of any of the figures
presented herein may be analog or digital, continuous time or
discrete time, and single-ended or differential. For instance, if
a signal path is shown as a single-ended path, it also repre-
sents a differential signal path. Similarly, if a signal path is
shown as a differential path, it also represents a single-ended
signal path. While one or more particular architectures are
described herein, other architectures can likewise be imple-
mented that use one or more data buses not expressly shown,
direct connectivity between elements, and/or indirect cou-
pling between other elements as recognized by one of average
skill in the art.

The term “module” is used in the description of the various
embodiments of the present invention. A module includes a
processing module, a functional block, hardware, and/or soft-
ware stored on memory for performing one or more functions
as may be described herein. Note that, if the module is imple-
mented via hardware, the hardware may operate indepen-
dently and/or in conjunction software and/or firmware. As
used herein, a module may contain one or more sub-modules,
each of which may be one or more modules.

While particular combinations of various functions and
features of the present invention have been expressly
described herein, other combinations of these features and
functions are likewise possible. The present invention is not
limited by the particular examples disclosed herein and
expressly incorporates these other combinations.

What is claimed is:
1. A method for execution by a computer, the method
comprises:

retrieving a plurality of sets of encoded data slices, wherein
a set of encoded data slices corresponds to a dispersed
storage error encoded combined partition of a plurality
of combined partitions;

dispersed storage error decoding the plurality of sets of
encoded data slices to reproduce the plurality of com-
bined partitions;

separating the plurality of combined partitions into a plu-
rality of masked key partitions and a plurality of
encrypted data segment partitions;

combining the plurality of masked key partitions to pro-
duce a masked key;

combining the plurality of encrypted data segment parti-
tions to produce an encrypted data segment;

performing a deterministic function on the encrypted data
segment to produce a transformed representation of the
encrypted data segment;

10

15

20

25

30

35

40

45

50

55

60

65

34

unmasking the masked key utilizing the transformed rep-
resentation of the encrypted data segment to recover an
encryption key; and

decrypting the encrypted data segment using the encryp-
tion key to recover a data segment.

2. The method of claim 1 further comprises:

determining a partitioning scheme based on a desired level
of security; and

separating the plurality of combined partitions in accor-
dance with the partitioning scheme.

3. The method of claim 1, wherein the separating the plu-
rality of masked key partitions from the plurality of encrypted
data segment partitions comprises:

determining a pseudo random combining process that was
used to combine the plurality of masked key partitions
and the plurality of encrypted data segment partitions;
and

separating the plurality of masked key partitions from the
plurality of encrypted data segment partitions in accor-
dance with the pseudo random combining process.

4. The method of claim 1, wherein the separating the plu-
rality of masked key partitions from the plurality of encrypted
data segment partitions further comprises:

separating the plurality of masked key partitions with the
plurality of encrypted data segment partitions in accor-
dance with an interleaving process.

5. The method of claim 1 further comprises:

for a set of encoded data slices of the plurality of sets of
encoded data slices:
dispersed storage error decoding the set of encoded data

slices to produce a further combined partition;
separating a second masked key and an encrypted com-
bined partition from the further combined partition;
performing a deterministic function on the encrypted
combined partition to produce a transformed repre-
sentation of the encrypted combined partition;
unmasking the second masked key utilizing the trans-
formed representation of the encrypted combined par-
tition to produce a second encryption key; and
decrypting the encrypted combined partition utilizing
the second encryption key to produce a combined
partition of the plurality of combined partitions.

6. A computer readable storage device comprises:

a first memory section that stores operational instructions
that, when executed by a computing device, causes the
computing device to:
retrieve a plurality of sets of encoded data slices,

wherein a set of encoded data slices corresponds to a
dispersed storage error encoded combined partition of
a plurality of combined partitions;

a second memory section that stores operational instruc-
tions that, when executed by the computing device,
causes the computing device to:
dispersed storage error decode the plurality of sets of

encoded data slices to reproduce the plurality of com-
bined partitions;
a third memory section that stores operational instructions
that, when executed by the computing device, causes the
computing device to:
separate the plurality of combined partitions into a plu-
rality of masked key partitions and a plurality of
encrypted data segment partitions;

combine the plurality of masked key partitions to pro-
duce a masked key;

combine the plurality of encrypted data segment parti-
tions to produce an encrypted data segment;

US 9,110,593 B2

35

perform a deterministic function on the encrypted data
segment to produce a transformed representation of
the encrypted data segment;

unmask the masked key utilizing the transformed repre-
sentation of the encrypted data segment to recover an
encryption key; and

a fourth memory section that stores operational instruc-

tions that, when executed by the computing device,

causes the computing device to:

decrypt the encrypted data segment using the encryption
key to recover a data segment.

7. The computer readable storage device of claim 6,
wherein the third memory section further stores operational
instructions that, when executed by the computing device,
causes the computing device to:

determine a partitioning scheme based on a desired level of

security; and

separate the plurality of combined partitions in accordance

with the partitioning scheme.

8. The computer readable storage device of claim 6,
wherein the third memory section further stores operational
instructions that, when executed by the computing device,
causes the computing device to separate the plurality of
masked key partitions from the plurality of encrypted data
segment partitions by:

determining a pseudo random combining process that was

used to combine the plurality of masked key partitions
and the plurality of encrypted data segment partitions;
and

separating the plurality of masked key partitions from the

plurality of encrypted data segment partitions in accor-
dance with the pseudo random combining process.

9. The computer readable storage device of claim 6,
wherein the third memory section further stores operational
instructions that, when executed by the computing device,
causes the computing device to separate the plurality of
masked key partitions from the plurality of encrypted data
segment partitions by:

separating the plurality of masked key partitions with the

plurality of encrypted data segment partitions in accor-
dance with an interleaving process.

10. The computer readable storage device of claim 6,
wherein the first memory section further stores operational
instructions that, when executed by the computing device,
causes the computing device to:

for a set of encoded data slices of the plurality of sets of

encoded data slices:

dispersed storage error decode the set of encoded data
slices to produce a further combined partition;

separate a second masked key and an encrypted com-
bined partition from the further combined partition;

perform a deterministic function on the encrypted com-
bined partition to produce a transformed representa-
tion of the encrypted combined partition;

unmask the second masked key utilizing the trans-
formed representation of the encrypted combined par-
tition to produce a second encryption key; and

decrypt the encrypted combined partition utilizing the
second encryption key to produce a combined parti-
tion of the plurality of combined partitions.

11. A computer comprises:

an interface;

memory; and

aprocessing module operably coupled to the interface and

to the processing module, wherein the processing mod-
ule is operable to:

10

15

20

25

30

35

40

45

50

55

60

65

36

retrieve a plurality of sets of encoded data slices,
wherein a set of encoded data slices corresponds to a
dispersed storage error encoded combined partition of
a plurality of combined partitions;

dispersed storage error decode the plurality of sets of
encoded data slices to reproduce the plurality of com-
bined partitions;

separate the plurality of combined partitions into a plu-
rality of masked key partitions and a plurality of
encrypted data segment partitions;

combine the plurality of masked key partitions to pro-
duce a masked key;

combine the plurality of encrypted data segment parti-
tions to produce an encrypted data segment;

perform a deterministic function on the encrypted data
segment to produce a transformed representation of
the encrypted data segment;

unmask the masked key utilizing the transformed repre-
sentation of the encrypted data segment to recover an
encryption key; and

decrypt the encrypted data segment using the encryption
key to recover a data segment.

12. The computer of claim 11, wherein the processing
module is further operable to:

determine a partitioning scheme based on a desired level of

security; and

separate the plurality of combined partitions in accordance

with the partitioning scheme.

13. The computer of claim 11, wherein the processing
module is further operable to separate the plurality of masked
key partitions from the plurality of encrypted data segment
partitions by:

determining a pseudo random combining process that was

used to combine the plurality of masked key partitions
and the plurality of encrypted data segment partitions;
and

separating the plurality of masked key partitions from the

plurality of encrypted data segment partitions in accor-
dance with the pseudo random combining process.

14. The computer of claim 11, wherein the processing
module is further operable to separate the plurality of masked
key partitions from the plurality of encrypted data segment
partitions by:

separating the plurality of masked key partitions with the

plurality of encrypted data segment partitions in accor-
dance with an interleaving process.

15. The computer of claim 11, wherein the processing
module is further operable to:

for a set of encoded data slices of the plurality of sets of

encoded data slices:

dispersed storage error decode the set of encoded data
slices to produce a further combined partition;

separate a second masked key and an encrypted com-
bined partition from the further combined partition;

perform a deterministic function on the encrypted com-
bined partition to produce a transformed representa-
tion of the encrypted combined partition;

unmask the second masked key utilizing the trans-
formed representation of the encrypted combined par-
tition to produce a second encryption key; and

decrypt the encrypted combined partition utilizing the
second encryption key to produce a combined parti-
tion of the plurality of combined partitions.

#* #* #* #* #*

